Процесс начала горения под воздействием источника зажигания. Пожарная безопасность как система государственных и общественных мероприятий

20.04.2020

ВВЕДЕНИЕ

Пожарная безопасность – это такое состояние объекта, при котором исключалось бы возникновение пожара, а в случае его возникновения предотвращалось бы воздействие на людей опасных факторов пожара и обеспечивалась защита материальных ценностей.

Пожарная безопасность обеспечивается системами предотвращения пожара и пожарной защиты, включающими комплекс организационных мероприятий и технических средств.

На машиностроительных предприятиях имеются, вновь разрабатываются и внедряются различные виды производственного оборудования, новые технологические процессы. При недостаточном внимании к их особенностям они могут стать источником пожара или взрыва. Предотвратить это можно, зная пожаро- и взрывоопасные особенности оборудования, свойства материалов и их изменение в технологическом процессе.

Процессы горения

Правильная организация противопожарных мероприятий и тушения пожаров невозможна без понимания сущности химических и физических процессов , которые происходят при горении. Знание этих процессов дает возможность успешно бороться с огнем.

Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и обычно свечением.

В большинстве случаев при пожаре окисление горючих веществ происходит кислородом воздуха , но окислителями могут выступить также хлор, бром и другие вещества. В дальнейшем в качестве окислителя будем подразумевать О 2 .

Горение возможно при наличии:

1. вещества, способного гореть,

2. кислорода (воздуха),

3. источника зажигания.

При этом необходимо, чтобы горючее вещество и кислород находились в определенных количественных соотношениях , а источник зажигания имел необходимый запас тепловой энергии .

Известно, что в воздухе содержится около 21% кислорода . Горени е большинства веществ становится невозможным , когда содержание кислорода в воздухе понижается до 14-18% , и только некоторые горючие вещества (водород, этилен, ацетилен и др.) могут гореть при содержании кислорода в воздухе до 10% и менее. При дальнейшем уменьшении содержания кислорода горение большинства веществ прекращается .

Горючее вещество и кислород являются реагирующими веществами и составляют горючую систему , а источник зажигания вызывает в ней реакциюгорения .

Источником зажигания может быть горящее и накаленное тело , в также электрический разряд , обладающий запасом энергии, достаточным для возникновения горения и др.

Горючие системы подразделяются на:

1. однородные. Однородными являются системы, в которых горючее вещество и воздух равномерно перемешаны друг с другом (смеси горючих газов, паров с воздухом). Горение таких систем называют кинетическим. Скоростьего определяется скоростью химической реакции, значительной при высокой температуре. При определенных условиях такое горение может носить характер взрыва или детонации .


2. неоднородные.Неоднородными являются системы, в которых горючее вещество и воздух не перемешаны друг с другом и имеют поверхности раздела (твердые горючие материалы и нераспыленные жидкости). В процессе горения неоднородных горючих систем кислород воздуха проникает (диффундирует) сквозь продукты горения к горючему веществу и вступает с ним в реакцию. Такое горение называют диффузионным, так как его скорость определяется главным образом сравнительно медленно протекающим процессом - диффузией.

Для возгорания тепло источника зажигания должно быть достаточным для превращения горючих веществ в пары и газы и для нагрева их до температуры самовоспламенения.

По соотношению горючего и окислителя различают процессы горения бедных и богатых горючих смесей. Бедные смеси содержат в избытке окислитель и имеют недостаток горючего компонента. Богатые смеси , наоборот, имеют в избытке горючий компонент и в недостатке окислитель.

Возникновение горения связано с обязательным самоускорением реакции в системе.

Самоускорение химической реакции при горении подразделяется на три основных вида:

а) тепловой. По тепловой теории процесс самовоспламенения объясняется активизацией процесса окисления с возрастанием скорости химической реакции.

б) цепной. По цепной теории процесс самовоспламенения объясняется разветвлением цепей химической реакции.

Рис. 1. Один первичный центр может вызвать целую лавину химического превращения. Изображены два типа таких лавин, где каждая черточка изображает один элементарный акт реакции.

в) комбинированный - цепочечно-тепловой. Практически процессы горения осуществляются преимущественно по комбинированному цепочечно-тепловому механизму.

Русский учёный Николай Семёнов удостоен Нобелевская премии по химии в 1956 году за исследования в области механизма химических реакций. Доказал, что многие химические реакции, включая реакцию полимеризации, осуществляются с помощью механизма цепной или разветвленной цепной реакции.

Сгорание различают :

- полное - образуются продукты, которые неспособны больше гореть: углекислый газ, сернистый газ, пары воды.

- неполное сгорание происходит, когда к зоне горения затруднен доступ кислорода воздуха, в результате чего образуются продукты неполного сгорания: окись углерода, спирты, альдегиды и др.

Ориентировочно количество воздуха V, м 3 необходимое для сгорания 1 кг вещества (или 1 м 3 газа) определяется по формуле:

где Q - теплота сгорания, кДж/кг, или кДж/м 3 .

Теплота сгорания некоторых веществ: бензина-47 000 кДж/кг ; древесины воздушно-сухой -14 600 кДж/кг; ацетилена-54 400 кДж/м 3 ; метана - 39 400 кДж/м 3 ; окиси углерода 12 600 кДж/м 3 .

По теплоте сгорания горючего вещества можно определять:

а) какое количество тепла выделяется при его сгорании,

б) температуру горения,

в) давление при взрыве в замкнутом объеме и другие данные.

Температура горения вещества определяется как теоретическая , так и действительная . Теоретической называется температура горения, до которой нагреваются продукты сгорания, в предположении, что все тепло , выделяющееся при горении, идет на их нагревание .

Теоретическая температура горения

где m- количество продуктов горения, образующихся при сгорании 1кг вещества; с - теплоемкость продуктов горения, кДж/ (кг∙К); Т - температура воздуха, К; Q - теплота сгорания, кДж/кг.

Действительная температура горения на 30-50% ниже теоретической , так как значительная часть тепла, выделяющегося при горении, рассеивается в окружающую среду.

Высокая температура горения способствует распространению пожара , при ней большое количество тепла излучается в окружающую среду, и идет интенсивная подготовка горючих веществ к горению. Тушение пожара при высокой температуре горения затрудняется .

Виды процессов горения :

Вспышка - это быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание - возникновение горения под воздействием источника зажигания.

Самовозгорание - это явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения веществ (материала, смеси) при отсутствии источника зажигания.

Воспламенение - возгорание сопровождающееся появлением пламени.

Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени.

Взрывом называется чрезвычайно быстрое химическое (взрывчатое) превращение вещества, сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

Необходимо понимать различие между процессами возгорания (воспламенения) и самовозгорания (самовоспламенения). Для того чтобы возникло воспламенение , необходимо внести в горючую систему тепловой импульс , имеющий температуру, превышающую температуру самовоспламенения вещества . Возникновение же горения при температурах ниже температуры самовоспламенения относят к процессу самовозгорания (самовоспламенения).

Горение при этом возникает без внесения источника зажигания за счет теплового илимикробиологического самовозгорания .

Тепловое самовозгорание вещества возникает в результате самонагревания под воздействием скрытого или внешнего источника нагрева. Самовоспламенение возможно только в том случае, если количество тепла, выделяемого в процессе самоокисления, будет превышать отдачу тепла в окружающую среду.

Микробиологическое самовозгорание возникает в результате самовозгорания под воздействием жизнедеятельности микроорганизмов в массе вещества (материала, смеси).

Горючие вещества характеризуются:

1. Температура самовоспламенения - это самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения. Температуры самовоспламенения некоторых жидкостей, газов и твердых приведены в табл. 1.

Таблица 1

2. Периодом индукции (временем запаздывания самовоспламенения) называют промежуток времени, в течение которого происходит саморазогревание до воспламенения. Период индукции дляодного и того же горючего вещества неодинаков и находится в зависимости от состава смеси, начальных температур и давления.

Период индукции имеет практическое значение при действии на горючее вещество маломощных источников воспламенения (искры ). Искра, попадая в горючую смесь паров или газов с воздухом, нагревает некоторый объем смеси, и в то же время происходит охлаждение искры. Воспламенение смеси зависит от соотношения периода индукции смеси и времени охлаждения искры. При этом если период индукции больше времени охлаждения искры, то воспламенения смеси не произойдет.

Период индукции принят в основу классификации газовых смесей по степени их опасности в отношении воспламенения . Период индукции пылевых смесей зависит от размера пылинок, количества летучих веществ, влажности и других факторов.

Некоторые вещества могут самовозгораться , находясь при обычной температуре . Это в основном твердые пористые вещества большей частью органического происхождения (опилки, торф , ископаемый уголь и др.). Склонны к самовозгоранию и масла, распределенные тонким слоем по большой поверхности . Этим обусловлена возможность самовозгорания промасленной ветоши . Причиной самовозгорания промасленных волокнистых материалов является распределение жировых веществ тонким слоем на их поверхности и поглощение кислорода из воздуха . Окисление масла кислородом воздуха сопровождается выделением тепла . В случае, когда количество образующегося тепла превышает теплопотери в окружающую среду, возможно возникновение пожара.

Пожарная опасность веществ, склонных к самовозгоранию, очень велика, поскольку они могут загораться без всякого подвода тепла при температуре окружающей среды ниже температуры самовоспламенения веществ, а период индукции самовозгорающихся веществ может составлять несколько часов, дней и даже месяцев. Начавшийся процесс ускорения окисления (разогревания вещества) можно остановить лишь при обнаружении опасного нарастания температуры, что указывает на большое значение пожарно-профилактических мероприятий.

Горение – одно из интереснейших и жизненно необходимых для людей явлений природы. Горение является полезным для человека до тех пор, пока оно не выходит из подчинения его разумной воле. В противном случае оно может привести к пожару. Пожар - это неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства. Для предотвращения пожара и его ликвидации необходимы знания о процессе горения.

Горение – это химическая реакция окисления, сопровождающаяся выделением тепла. Для возникновения горения необходимо наличие горючего вещества, окислителя и источника зажигания.

Горючее вещество – это всякое твёрдое, жидкое или газообразное вещество, способное окисляться с выделением тепла.

Окислителями могут быть хлор, фтор, бром, йод, окислы азота и другие вещества. В большинстве случаев при пожаре окисление горючих веществ происходит кислородом воздуха.

Источник зажигания обеспечивает энергетическое воздействие на горючее вещество и окислитель, приводящее к возникновению горения. Источники зажигания принято делить на открытые (светящиеся) – молния, пламя, искры, накалённые предметы, световое излучение; и скрытые (несветящиеся) – тепло химических реакций, микробиологические процессы, адиабатическое сжатие, трение, удары и т. п. Они имеют различную температуру пламени и нагрева. Всякий источник зажигания должен иметь достаточный запас теплоты или энергии, передаваемой реагирующим веществам. Поэтому на процесс возникновения горения влияет и продолжительность воздействия источника зажигания. После начала процесса горения оно поддерживается тепловым излучением из его зоны.

Горючее вещество и окислитель образуют горючую систему , которая может быть химически неоднородной или однородной. В химически неоднородной системе горючее вещество и окислитель не перемешаны и имеют поверхность раздела (твёрдые и жидкие горючие вещества, струи горючих газов и паров, поступающих в воздух). При горении таких систем кислород воздуха непрерывно диффундирует сквозь продукты горения к горючему веществу и затем вступает в химическую реакцию. Такое горение называется диффузионным . Скорость диффузионного горения невелика, так как она замедляется процессом диффузии. Если горючее вещество в газообразном, парообразном или пылеобразном состоянии уже перемешано с воздухом (до поджигания его), то такая горючая система является однородной и процесс её горения зависит только от скорости химической реакции. В этом случае горение протекает быстро и называется кинетическим .

Горение может быть полным и неполным. Полное горение происходит в том случае, когда кислород поступает в зону горения в достаточном количестве. Если кислорода недостаточно для окисления всех продуктов, участвующих в реакции, происходит неполное горение. К продуктам полного горения относятся углекислый и сернистый газы, пары воды, азот, которые не способны к дальнейшему окислению и горению. Продукты неполного горения – окись углерода, сажа и продукты разложения вещества под действием тепла. В большинстве случаев горение сопровождается возникновением интенсивного светового излучения – пламенем.

Различают ряд видов возникновения горения: вспышка, возгорание, воспламенение, самовозгорание, самовоспламенение, взрыв.

Вспышка – это быстрое сгорание горючей смеси без образования повышенного давления газов. Количества тепла, которое образуется при вспышке, недостаточно для продолжения горения.

Возгорание – это возникновение горения под воздействием источника зажигания.

Воспламенение – возгорание, сопровождающееся появлением пламени. При этом вся остальная масса горючего вещества остаётся относительно холодной.

Самовозгорание – явление резкого увеличения скорости экзотермических реакций окисления в веществе, приводящее к возникновению его горения при отсутствии внешнего источника зажигания. В зависимости от внутренних причин процессы самовозгорания делятся на химические, микробиологические и тепловые. Химическое самовозгорание происходит от воздействия на вещества кислорода воздуха, воды или от взаимодействия веществ. Самовозгораются промасленные тряпки, спецодежда, вата и даже металлическая стружка. Причиной самовозгорания промасленных волокнистых материалов является распределение жировых веществ тонким слоем на их поверхности и поглощение кислорода из воздуха. Окисление масла сопровождается выделением тепла. Если образуется тепла больше, чем теплопотери в окружающую среду, то возможно возникновение горения без всякого подвода тепла. Некоторые вещества самовозгораются при взаимодействии с водой. К ним относятся калий, натрий, карбид кальция и карбиды щелочных металлов. Кальций загорается при взаимодействии с горячей водой. Окись кальция (негашеная известь) при взаимодействии с небольшим количеством воды сильно разогревается и может воспламенить соприкасающиеся с ней горючие материалы (например, дерево). Некоторые вещества самовозгораются при смешивании с другими. К ним относятся в первую очередь сильные окислители (хлор, бром, фтор, йод), которые, контактируя с некоторыми органическими веществами, вызывают их самовозгорание. Ацетилен, водород, метан, этилен, скипидар под действием хлора самовозгораются на свету. Азотная кислота, также являясь сильным окислителем, может вызывать самовозгорание древесной стружки, соломы, хлопка. Микробиологическое самовозгорание заключается в том, что при соответствующей влажности и температуре в растительных продуктах, торфе интенсифицируется жизнедеятельность микроорганизмов. При этом повышается температура и может возникнуть процесс горения. Тепловое самовозгорание происходит в результате продолжительного действия незначительного источника тепла. При этом вещества разлагаются и в результате усиления окислительных процессов самонагреваются. Полувысыхающие растительные масла (подсолнечное, хлопковое и др.), касторовая олифа, скипидарные лаки, краски и грунтовки, древесина и ДВП, кровельный картон, нитролинолеум и некоторые другие материалы и вещества могут самовозгораться при температуре окружающей среды 80 - 100 ?С.

Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени. Самовоспламеняться могут твёрдые и жидкие вещества, пары, газы и пыли в смеси с воздухом.

Взрыв (взрывное горение) - это чрезвычайно быстрое горение, которое сопровождается выделением большого количества энергии и образованием сжатых газов, способных производить механические разрушения.

Виды горения характеризуются температурными параметрами, основными из них являются следующие. Температура вспышки – это наименьшая температура горючего вещества, при которой над его поверхностью образуются пары или газы, способные кратковременно вспыхнуть в воздухе от источника зажигания. Однако скорость образования паров или газов ещё недостаточна для продолжения горения. Температура воспламенения – это наименьшая температура горючего вещества, при которой оно выделяет горючие пары или газы с такой скоростью, что после воспламенения их от источника зажигания возникает устойчивое горение. Температура самовоспламенения – это самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся воспламенением. Температура самовоспламенения у исследованных твёрдых горючих материалов и веществ 30 – 670 °С. Самую низкую температуру самовоспламенения имеет белый фосфор, самую высокую - магний. У большинства пород древесины эта температура равна 330 – 470 ?С.

Конспект по безопасности жизнедеятельности

Всем нам практически ежедневно приходится сталкиваться с тем или иным проявлением процессом горения. В нашей статье мы хотим более подробно рассказать какие особенности включает в себя данный процесс с научной точки зрения.

Является основной составляющим процессом на пожаре. Пожар начинается с возникновения горения, его интенсивность развития как правило путь пройденный огнем, то есть скорость горения, а тушение заканчивается прекращением горения.

Под горением обычно понимают экзотермическую реакцию между горючим и окислителем, сопровождающуюся, по крайней мере, одним из трех следующих факторов: пламенем, свечением, дымообразованием. Из-за сложности процес­са горения указанное определение не является исчерпывающим. В нем не учтены такие важнейшие особенности горения, как быстрое протекание лежащей в его основе экзотермической реакции, ее самоподдерживающийся характер и способность к самораспространению процесса по горючей смеси.

Различие между медленной экзотермической окислительно-вос­становительной реакцией (коррозия железа, гниение) и горением заключается в том, что последняя протекает настолько быстро, что теплота производится быстрее, чем рассеивается. Это приводит к по­вышению температуры в зоне реакции на сотни и даже тысячи гра­дусов, к видимому свечению и образованию пламени. По сути так образуется пламенное горение.Если происходит выделение тепла но пламя при это отсутствует, то этот процесс называется тлением.И в том и в другом процессе происходит – аэрозоля полного или неполного сгорания ве­ществ. Стоит отметить, что при горении некоторых веществ пламени не видно, а также отсутствует и выделение дыма, к таким веществам относится водород. Слишком быстрые реакции (взрывчатое пре­вращение) также не входят в понятие горения.

Необходимым условием для возникновения горения является на­личие горючего вещества, окислителя (при пожаре его роль выпол­няет кислород воздуха) и источника зажигания. Для непосредственно­го возгорания необходимо наличие критических условий по составу горючей смеси, геометрии и температуре горючего материала, давле­нию и др. После возникновения горения в качестве источника зажи­гания выступает уже само пламя или зона реакции.

Например, метан способен окисляться кислородом с выделением тепла до метилового спирта и муравьиной кислоты при 500-700 К. Однако, чтобы реакция продолжилась, необходимо пополнение теп­лоты за счет внешнего подогрева. Горением это не является. При на­гревании реакционной смеси до температуры выше 1000 К скорость окисления метана возрастает настолько, что выделяющегося тепла становится достаточно для дальнейшего продолжения реакции, необ­ходимость в подводе теплоты извне исчезает, начинается горение. Та­ким образом, реакция горения, возникнув, способна сама себя поддер­живать. Это главная отличительная особенность процесса горения. Другая, связанная с ней особенность - способность пламени, являю­щегося зоной химической реакции, самопроизвольно распростра­няться по горючей среде или горючему материалу со скоростью, оп­ределяемой природой и составом реакционной смеси, а также услови­ями процесса. Это основной механизм развития пожара.

Типичная модель горения построена на реакции окисления органических веществ или углерода кислородом воздуха. Множество физических и химических процессов сопровождают горение. Физика это перенос тепла в систему. Окислительные и восстановительные реакции это составляющая природы горения со стороны химии. Отсюда из понятия горение вытекают самые разные химические превращения, включая разложение исходных соединений, диссоциации и ионизации продуктов.

Совокупность горючего вещества или материала с окислителем представляет собой горючую среду. В результате разложения горю­чих веществ под воздействием источника зажигания происходит об­разование газопаровоздушной реакционной смеси. Горючие смеси, которые по составу (соотношению компонентов горючего и окисли­теля) отвечают уравнению химической реакции, называются смесями стехиометрического состава. Они наиболее опасны в пожарном от­ношении: легче воспламеняются, интенсивнее горят, обеспечивая полное сгорание вещества, в результате чего выделяют максималь­ное количество теплоты.

Рис. 1. Формы диффузионных пламен

а – горение реактивной струи, б – горение разлитой жидкости, в – горение лесной подстилки

По соотношению количества горючего материала и объема окислителя различают бедные и богатые смеси: бедные содержат в изобилии окислитель, богатые - горючий материал. Минимальное количество окислителя, необходимое для полного сгорания единицы массы (объема) того или иного горю­чего вещества, определяется по уравнению химической реакции. При горении с участием кислорода требуемый (удельный) расход воздуха для большинства горючих веществ находится в пределах 4-15 м 3 /кг. Горение веществ и материалов возможно только при обусловленном содержании в воздухе их паров или газообразных продуктов, а также при концентрации кислорода не ниже заданного предела.

Так, для картона и хлопка самопотухание наступает уже при 14 об. % кис­лорода, а полиэфирной ваты - при 16 об. %. В процессе горения, как и в других химических процессах, обяза­тельны два этапа: создание молекулярного контакта между реаген­тами и само взаимодействие молекул горючего с окислителем с об­разованием продуктов реакции. Если скорость превращения исход­ных реагентов определяется диффузионными процессами, т.е. ско­ростью переноса (пары горючих газов и кислорода переносятся в зону реакции за счет градиента концентраций в соответствии с зако­нами диффузии Фика), то такой режим горения называется диффу­зионным. На рис. 1 приведены различные формы диффузионных пламен. При диффузионном режиме зона горения размыта, и в ней образуется значительное количество продуктов неполного сгора­ния. Если же скорость горения зависит только от скорости химиче­ской реакции, которая значительно выше скорости диффузии, то режим горения называется кинетическим. Ему свойственны более высокие скорости и полнота сгорания и как следствие высокие ско­рости тепловыделения и температура пламени. Этот режим имеет место в предварительно перемешанных смесях горючего и окисли­теля. Отсюда, если реагенты в зоне химической реакции находятся в одинаковой (обычно газовой) фазе, то такое горение называют го­могенным, при нахождении горючего и окислителя в зоне реакции в разных фазах - гетерогенным. Гомогенным является горение не только газов, но и , а также большинства твердых . Объясняется это тем, что в зоне реакции горят не сами материалы, а их пары и газообразные продукты разложе­ния. Наличие пламени является отличительным признаком гомоген­ного горения.

Примерами гетерогенного горения служат горение углерода, уг­листых остатков древесины, нелетучих металлов, которые даже при высоких температурах остаются в твердом состоянии. Химическая реакция горения в этом случае будет происходить на поверхности раздела фаз (твердой и газообразной). Отметим, что конечными про­дуктами горения могут быть не только оксиды, но и фториды, хлори­ды, нитриды, сульфиды, карбиды и др.

Характеристики процесса горения разнообразны. Их можно подразделить на следующие группы: форма, размер и структура пламе­ни; температура пламени, его излучательная способность; тепловы­деление и теплота сгорания; скорость горения и концентрационные пределы устойчивого горения и др.

Всем известно, что при горении образуется свечение которое сопровождает продукта горения.

Рассмотрим две системы:

  • газообразная система
  • конденсированная система

В первом случае при возникновении горения весь процесс будет происходить в пламени, во втором же случае часть реакций будет происходить в самом материале, либо его поверхности. Как упоминалось выше существуют газы которые могут гореть без пламени, но если рассматривать твердые вещества существуют также группы металлов которые также способны гореть без проявления пламени.

Часть пламени с максимальным значением, где происходят интенсивные превращения, называется фронтом пламени.

Теплообменные процессы и диффузия активных частиц из зоны горения которые являются ключевыми механизмами движения фронта пламени по горючей смеси.

Скорость распространения пламени принято разделять на:

  • дефлаграционное (нормальное), протекаю­щее с дозвуковыми скоростями (0,05-50 м/с)
  • детонационное, ког­да скорости достигают 500-3000 м/с.

Рис. 2. Ламинарное диффузионное пламя

В зависимости от характера скорости движения газового потока, создающего пламя, различают ламинар­ные и турбулентные пламена. В ламинарном пламени движение газов происходит в разных слоях, все процессы тепло-, массоообмена происходят путем мо­лекулярной диффузии и конвекции. В турбулентных пламенах про­цессы тепло-, массообмена осуществляются в основном за счет мак­роскопического вихревого движения. Пламя свечи - пример лами­нарного диффузионного пламени (рис. 2). Любое пламя высотой более 30 см будет уже обладать случайной газовой механической не­устойчивостью, которая проявляется видимыми завихрениями дыма и пламени.

Рис. 3. Переход ламинарного потока в турбулентный

Очень наглядным примером перехода ламинарного потока в тур­булентный является струйка сигаретного дыма (рис. 3), которая, поднявшись на высоту около 30 см, приобретает турбулентность.

При пожарах пламена имеют диффузионный турбулентный ха­рактер. Присутствие турбулентности в пламени усиливает перенос тепла, а смешивание влияет на химические процессы. В турбулент­ном пламени выше также скорости горения. Это явление делает затруднительным перенос поведения мелкомасштабных пламен на крупномасштабные, имеющих большую глубину и высоту.

Экспериментально доказано, что температура горения веществ в воздухе гораздо ниже температуры горения в атмосферной кислородной среде

В воздухе температура будет колебаться от 650 до 3100 °С, а в кислородной показатели температуры возрастут на 500-800 °С.

Правильная организация противопожарных мероприятий и тушения пожаров невозможна без понимания сущности химических и физических процессов, которые происходят при горении. Знание этих процессов дает возможность успешно бороться с огнем.

Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и обычно свечением. Окислителем в процессе горения может быть кислород, а также хлор, бром и другие вещества.

В большинстве случаев при пожаре окисление горючих веществ происходит кислородом воздуха. Этот вид окислителя и принят в дальнейшем изложении. Горение возможно при наличии вещества, способного гореть, кислорода (воздуха) и источника зажигания. При этом необходимо, чтобы горючее вещество и кислород находились в определенных количественных соотношениях, а источник зажигания имел необходимый запас тепловой энергии.

Известно, что в воздухе содержится около 21% кислорода. Горение большинства веществ становится невозможным, когда содержание кислорода в воздухе понижается до 14-18%, и только некоторые горючие вещества (водород, этилен, ацетилен и др.) могут гореть при содержании кислорода в воздухе до 10% и менее. При дальнейшем уменьшении содержания кислорода горение большинства веществ прекращается.

Горючее вещество и кислород являются реагирующими веществами и составляют горючую систему, а источник зажигания вызывает в ней реакцию горения. Источником зажигания может быть горящее пли накаленное тело, а также электрический разряд, обладающий запасом энергии, достаточным для возникновения горения и др.

Горючие системы подразделяются на однородные и неоднородные. Однородными являются системы, в которых горючее вещество и воздух равномерно перемешаны друг с другом (смеси горючих газов, паров с воздухом). Горение таких систем называют горением кинетическим. Скорость его определяется скоростью химической реакции, значительной при высокой температуре. При определенных условиях такое горение может носить характер взрыва или детонации. Неоднородными являются системы, в которых горючее вещество и воздух не перемешаны друг с другом и имеют поверхности раздела (твердые горючие материалы и нераспыленные жидкости). В процессе горения неоднородных горючих систем кислород воздуха проникает (диффундирует) сквозь продукты горения к горючему веществу и вступает с ним в реакцию. Такое горение называют диффузионным горением, так как его скорость определяется главным образом сравнительно медленно протекающим процессом-диффузией.

Для возгорания тепло источника зажигания должно быть достаточным для превращения горючих веществ в пары и газы и для нагрева их до температуры самовоспламенения. По соотношению горючего и окислителя различают процессы горения бедных и богатых горючих смесей. Бедные смеси содержат в избытке окислитель и имеют недостаток горючего компонента. Богатые смеси, наоборот, имеют в избытке горючий компонент и в недостатке окислитель.

Возникновение горения связано с обязательным самоускорением реакции в системе. Процесс самоускорения реакции окисления с переходом ее в горение называется самовоспламенением. Самоускорение химической реакции при горении подразделяется на три основных вида: тепловой, цепной и комбинированный - цепочечно-тепловой. По тепловой теории процесс самовоспламенения объясняется активизацией процесса окисления с возрастанием скорости химической реакции. По цепной теории процесс самовоспламенения объясняется разветвлением цепей химической реакции. Практически процессы горения осуществляются преимущественно по комбинированному цепочечно-тепловому механизму.

Сгорание различают полное и неполное. При полном сгорании образуются продукты, которые неспособны больше гореть: углекислый газ, сернистый газ, пары воды. Неполное сгорание происходит, когда к зоне горения затруднен доступ кислорода воздуха, в результате чего образуются продукты неполного сгорания: окись углерода, спирты, альдегиды и др.

Ориентировочно количество воздуха (м 3), необходимое для сгорания 1 кг вещества (или 1 м 3 газа),

где Q - теплота сгорания, кДж/кг, или кДж/м 3 .

Теплота сгорания некоторых веществ: бензина-47 000 кДж/кг; древесины воздушно-сухой -14 600 кДж/кг; ацетилена - 54400 кДж/м 3 ; метана - 39400 кДж/м 3 ; окиси углерода - 12600 кДж/м 3 .

По теплоте сгорания горючего вещества можно определить, какое количество тепла выделяется при его сгорании, температуру горения, давление при взрыве в замкнутом объеме и другие данные.

Температура горения вещества определяется как теоретическая, так и действительная. Теоретической называется температура горения, до которой нагреваются продукты сгорания, в предположении, что все тепло, выделяющееся при горении, идет на их нагревание.

Теоретическая температура горения

где m - количество продуктов горения, образующихся при сгорании 1 кг вещества; с - теплоемкость продуктов горения, кДж/ (кг*К); θ - температура воздуха, К; Q - теплота сгорания, кДж/кг.

Действительная температура горения на 30-50% ниже теоретической, так как значительная часть тепла, выделяющегося при горении, рассеивается в окружающую среду.

Высокая температура горения способствует распространению пожара, при ней большое количество тепла излучается в окружающую среду, и идет интенсивная подготовка горючих веществ к горению. Тушение пожара при высокой температуре горения затрудняется.

При рассмотрении процессов горения следует различать следующие его виды: вспышка, возгорание, воспламенение, самовоспламенение, самовозгорание, взрыв.

Вспышка - это быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание - возникновение горения под воздействием источника зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени.

Возгораемость - способность возгораться (воспламеняться) под воздействием источника зажигания.

Самовозгорание - это явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения веществ (материала, смеси) при отсутствии источника зажигания.

Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени.

Взрывом называется чрезвычайно быстрое химическое (взрывчатое) превращение вещества, сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

Необходимо понимать различие между процессами возгорания (воспламенения) и самовозгорания (самовоспламенения). Для того чтобы возникло воспламенение, необходимо внести в горючую систему тепловой импульс, имеющий температуру, превышающую температуру самовоспламенения вещества. Возникновение же горения при температурах ниже температуры самовоспламенения относят к процессу самовозгорания (самовоспламенения).

Горение при этом возникает без внесения источника зажигания - за счет теплового или микробиологического самовозгорания.

Тепловое самовозгорание вещества возникает в результате самонагревания под воздействием скрытого или внешнего источника нагрева. Самовоспламенение возможно только в том случае, если количество тепла, выделяемого в процессе самоокисления, будет превышать отдачу тепла в окружающую среду.

Микробиологическое самовозгорание возникает в результате самонагревания под воздействием жизнедеятельности микроорганизмов в массе вещества (материала, смеси). Температура самовоспламенения является важной характеристикой горючего вещества.

Температура самовоспламенения - это самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.

Температуры самовоспламенения некоторых жидкостей, газов и твердых веществ, имеющих применение в машиностроительной промышленности, приведены в табл. 28.

Таблица 28 Температуры самовоспламенения некоторых жидкостей

Вещество Температура самовоспламенения, °С

Фосфор белый

20

Сероуглерод

112

Целлулоид

140-180

Сероводород

246

Масла нефтяные

250-400
250

Бензин А-76

255
380-420

Каменный уголь

400

Ацетилен

406

Этиловый спирт

421

Древесный уголь

450

Нитробензол

482
530
612
625

Окись углерода

644
700

Помимо температуры самовоспламенения, горючие вещества характеризуются периодом индукции или временем запаздывания самовоспламенения. Периодом индукции называют промежуток времени,

в течение которого происходит саморазогревание до воспламенения. Период индукции для одного и того же горючего вещества неодинаков и находится в зависимости от состава смеси, начальных температуры и давления.

Период индукции имеет практическое значение при действии на горючее вещество маломощных источников воспламенения (искры). Искра, попадая в горючую смесь паров или газов с воздухом, нагревает некоторый объем смеси, и в то же время происходит охлаждение искры. Воспламенение смеси зависит от соотношения периода индукции смеси и времени охлаждения искры. При этом, если период индукции больше времени охлаждения искры, то воспламенения смеси не произойдет.

Период индукции принят в основу классификации газовых смесей по степени их опасности в отношении воспламенения. Период индукции пылевых смесей зависит от размера пылинок, количества летучих веществ, влажности и других факторов.

Некоторые вещества могут самовозгораться, находясь при обычной температуре. Это в основном твердые пористые вещества большей частью органического происхождения (опилки, торф, ископаемый уголь и др.). Склонны к самовозгоранию и масла, распределенные тонким слоем по большой поверхности. Этим обусловлена возможность самовозгорания промасленной ветоши. Причиной самовозгорания промасленных волокнистых материалов является распределение жировых веществ тонким слоем на их поверхности и поглощение кислорода из воздуха. Окисление масла кислородом воздуха сопровождается выделением тепла. В случае, когда количество образующегося тепла превышает теплопотери в окружающую среду, возможно возникновение пожара.

Пожарная опасность веществ, склонных к самовозгоранию, очень велика, поскольку они могут загораться без всякого подвода тепла при температуре окружающей среды ниже температуры самовоспламенения веществ, а период индукции самовозгорающихся веществ может составлять несколько часов, дней и даже месяцев. Начавшийся процесс ускорения окисления (разогревания вещества) можно остановить лишь при обнаружении опасного нарастания температуры, что указывает на большое значение пожарно-профилактических мероприятий.

На машиностроительных предприятиях применяются многие вещества, способные к самовозгоранию. Самовозгораться при взаимодействии с воздухом могут сульфиды железа, сажа, алюминиевая и цинковая пудра и др. Самовозгораться при взаимодействии с водой могут щелочные металлы, карбиды металлов и др. Карбид кальция (СаС 2), реагируя с водой, образует ацетилен (С 2 Н 2).

Обеспечение безопасности образовательного учреждения Петров Сергей Викторович

11.3. Механизм возникновения и развития пожаров

Следует отличать пожар от возгорания.

Пожар – это неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства. Горение под контролем человека не является пожаром, если оно не наносит ущерба.

Несанкционированное возгорание, начало горения может быть ликвидировано собственными силами с использованием первичных средств пожаротушения (огнетушителей, песка, пожарного водопровода). Однако руководителям ОУ необходимо понимать, что если горение усилилось и переросло в пожар, то привлекать к тушению пожара даже обученных сотрудников небезопасно, а школьников – недопустимо.

Горение – это экзотермическая реакция окисления вещества, сопровождающаяся по крайней мере одним из трех факторов: свечением, пламенем, появлением дыма; тление – беспламенное горение материала.

Самовозгорание – это возгорание в результате самоинициируемых экзотермических процессов; воспламенение – начало пламенного горения под воздействием источника зажигания. В отличие от возгорания воспламенение сопровождается только пламенным горением.

Горение возникает при наличии трех обязательных составляющих: горючего вещества, окислителя и источника зажигания.

Горючее вещество – это вещество, которое способно самостоятельно гореть после того, как будет удален внешний источник зажигания. Горючее вещество может находиться в твердом, жидком или газообразном состоянии. Горючими веществами являются большинство органических веществ, ряд газообразных неорганических соединений и веществ, многие металлы и т. д. Наибольшую взрывопожарную опасность представляют газы.

Для воспламенения горючей жидкости над ее поверхностью сначала должна образоваться паровоздушная смесь. Горение жидкостей возможно только в паровой фазе; при этом поверхность самой жидкости остается сравнительно холодной. Среди горючих жидкостей выделяют класс наиболее опасных – легковоспламеняющиеся жидкости (ЛВЖ). К ЛВЖ относятся бензин, ацетон, бензол, толуол, некоторые спирты, эфиры и т. п.

Существует ряд веществ (газообразных, жидких или в твердом состоянии), которые способны самовоспламеняться при контакте с воздухом без предварительного нагрева (при комнатной температуре). К ним относятся: белый фосфор, гидриды и металлоорганические соединения легких металлов и др.

Существует также группа веществ, при контакте которых с водой или водяными парами, находящимися в воздухе, начинается химическая реакция с выделением большого количества теплоты. Под действием теплоты происходит самовоспламенение. К этой группе относятся щелочные и щелочно-земельные металлы (литий, натрий, калий, кальций, стронций, уран и др.), гидриды, карбиды, фосфиды указанных металлов, низкомолекулярные металлоорганические соединения (триэтилалюминий, триизобутилалюминий, триэтилбор) и др.

Горение твердого вещества происходит в несколько стадий. При воздействии внешнего источника происходит прогрев поверхностного слоя твердого вещества, из него начинается выделение газообразных летучих продуктов. Этот процесс может сопровождаться или плавлением поверхностного слоя твердого вещества, или его возгонкой (образованием газов, минуя стадию плавления). При достижении определенной концентрации горючих газов в воздухе они воспламеняются и начинают сами воздействовать на поверхностный слой, вызывая его плавление и поступление в зону горения новых порций горючих газов и паров твердого вещества.

Например, при нагревании до 110 °C происходят высушивание древесины и незначительные испарения смолы. Слабое разложение начинается при 130 °C. Более заметное разложение древесины (изменение цвета) происходит при температуре 150 °C и выше. Образующиеся при 150–200 °C продукты разложения составляют в основном воду и углекислый газ, поэтому гореть не могут. При температуре выше 200 °C начинает разлагаться главная составная часть древесины – клетчатка. Газы, образующиеся при этих температурах, являются горючими, так как они содержат значительные количества окиси углерода, водорода, углеводородов и паров других органических веществ. Когда концентрация этих продуктов в воздухе станет достаточной, при определенных условиях произойдет их воспламенение.

Если горючее вещество при плавлении растекается, оно увеличивает очаг горения (например, каучук, резина, металлы и т. д.). В том случае, если вещество не плавится, кислород постепенно подходит к поверхности горючего и процесс приобретает форму гетерогенного горения (например, выжигание кокса). Процесс горения твердых веществ сложен и многообразен, он зависит от многих факторов (дисперсность твердого материала, его влажность, наличие пленки окислов на его поверхности и ее прочность, присутствие примесей и т. д.).

Более интенсивно (часто со взрывом) происходит возгорание мелкодисперсных металлических порошков и пылевидных горючих материалов (например, древесной пыли, сахарной пудры).

В качестве окислителя при пожаре наиболее часто выступает кислород, содержание которого в воздухе составляет около 21 %. Сильными окислителями являются перекись водорода, азотная и серная кислоты, фтор, бром, хлор и их газообразные соединения, хромовый ангидрид, перманганат калия, хлораты и другие соединения.

При взаимодействии с металлами, которые в расплавленном состоянии проявляют очень высокую активность, в роли окислителей выступают вода, двуокись углерода и другие кислородсодержащие соединения, которые в обычной практике считаются инертными.

Однако только наличия смеси горючего и окислителя недостаточно для начала процесса горения. Необходим еще источник зажигания: воздействие пламени, электрического разряда (искра или дуга), локального нагрева стенки сосуда или введение катализатора.

Механизм прекращения горения – это система факторов, приводящих к окончанию процесса (реакции) горения. Он может быть естественно обусловленным, когда реализуется без участия человека (самоликвидация горения, например, в природе). Знание механизма прекращения горения позволяет целенаправленно использовать его при тушении пожаров (см. раздел 11.5).

Опасные факторы пожара (ОФП) – это факторы, воздействие которых может привести к людскому и (или) материальному ущербу. ОФП подразделяются на первичные и вторичные. К первичным относятся:

пламя и искры;

повышенная температура окружающей среды; токсичные продукты горения и термического разложения; дым и плохая видимость; пониженная концентрация кислорода.

Наиболее опасными являются токсические продукты горения и термического разложения, представляющие собой раскаленную до 300–400 °C смесь высокотоксичных отравляющих веществ, парализующих органы дыхания человека за один-два вдоха. Статистика гибели людей на пожарах показывает, что более 70 % погибших были поражены именно этим ОФП. Предельно допустимая повышенная температура окружающей среды составляет для человека 70 °C.

Динамика нарастания температуры продуктов горения при пожаре в помещении на выходе из него на высоте роста человека имеет следующие примерные параметры:

в течение первой минуты – примерно до 160 °C;

в течение второй минуты – примерно до 350 °C.

Следовательно, предельная температура в помещении достигается примерно за 2 минуты, что необходимо учитывать при эвакуации учащихся.

Один из важнейших ОФП – уменьшение содержания кислорода в газовой среде горящего помещения. В чистом воздухе его содержание достигает 27 %. В горящем здании за счет интенсивно протекающего горения содержание кислорода значительно снижается; его опасное значение составляет примерно 17 %. То есть существует вероятность того, что человек на пожаре, защищенный, например, самоспасателем, может погибнуть не от токсических продуктов горения, а от недостатка кислорода в газовой среде горящего здания.

К вторичным ОФП можно отнести:

осколки, части разрушающихся механизмов, обрушение конструкций зданий и т. д.;

токсические вещества и материалы из разрушенных механизмов и агрегатов;

электрическое напряжение вследствие потери изоляции токове-дущими частями механизмов;

опасные факторы взрыва, возникающие в результате пожара; паника и растерянность.

В динамике развития пожара выделяют несколько основных фаз.

Первая фаза (до 10 мин.) – начальная стадия, включающая переход возгорания в пожар примерно за 1–3 минуты и рост зоны горения в течение 5–6 минут. При этом происходит преимущественно линейное распространение огня вдоль горючих веществ и материалов, что сопровождается обильным дымовыделением. На этой фазе очень важно обеспечить изоляцию помещения от поступления наружного воздуха, так как в некоторых случаях в герметичном помещении наступает самозатухание пожара.

Вторая фаза – стадия объемного развития пожара, занимающая примерно 30–40 минут. Характеризуется бурным процессом горения с переходом в объемное горение; процесс распространения пламени происходит дистанционно за счет передачи энергии горения на другие материалы.

Через 15–20 минут происходит разрушение остекления, резко увеличивается приток кислорода, максимальных значений достигают температура (до 800–900 °C) и скорость выгорания. Стабилизация пожара при максимальных его значениях происходит на 20–25 минутах и продолжается еще 20–30 минут. При этом выгорает основная масса горючих материалов.

Третья фаза – стадия затухания пожара, т. е. догорание в виде медленного тления, после которого пожар прекращается.

Технические системы пожарной безопасности (сигнализации и автоматического тушения пожара) срабатывают до достижения максимальной интенсивности горения, в начальной стадии пожара. Это позволяет иметь запас времени, чтобы организовать эвакуацию и иные мероприятия по защите людей и имущества.

Данный текст является ознакомительным фрагментом. Из книги Обеспечение безопасности образовательного учреждения автора Петров Сергей Викторович

11.1. Причины пожаров в ОУ Большая часть пожаров в помещениях ОУ возникает по вине человека.Статистика выделяет следующие наиболее распространенные причины пожаров:курение в постели, брошенная непотушенная спичка, сигарета;шалости с огнем, неправильное устройство и

Из книги Потребители электрической энергии, энергоснабжающие организации и органы Ростехнадзора. Правовые основы взаимоотношений автора Красник Валентин Викторович

11.5. Тушение и средства тушения пожаров Тушение пожара – сложная профессиональная задача. Ее решение под силу только обученным и хорошо оснащенным пожарным подразделениям, которые всегда используют изолирующие средства защиты органов дыхания.При тушении пожара условно

Из книги Управление качеством автора Шевчук Денис Александрович

3.2. Практические условия возникновения электропоражений При анализе электротравматизма на объектах, подконтрольных органам Ростехнадзора, к сожалению, отсутствует систематизированный подход к выявлению и обобщению практических причин и условий возникновения

Из книги Грузовые автомобили. Кривошипно-шатунный и газораспределительный механизмы автора Мельников Илья

6.3.2. Причины возникновения аварий в системах электроснабжения Характерными причинами аварий в системах электроснабжения могут быть следующие.1. Понижение частоты электрического тока из-за возникшего недостатка мощности генерирующих источников вследствие потери

Из книги Материалы для ювелирных изделий автора Куманин Владимир Игоревич

3.3. Механизм управления качеством Управление качеством происходит на государственном, региональном и отраслевом уровнях, а также на уровне фирмы (предприятия).Под управлением качеством продукции понимаются действия, осуществляемые при создании, эксплуатации или

Из книги Искусство ручного ткачества автора Цветкова Наталья Николаевна

Кривошипно – шатунный механизм Кривошипно-шатунный механизм служит для восприятия давления газов в такте рабочего хода и преобразования возвратно-поступательного движения поршней во вращательное движение коленчатого вала. Он состоит из блока цилиндров, гильз и

Из книги Нанотехнологии [Наука, инновации и возможности] автора Фостер Линн

Газораспределительный механизм

Из книги Современные методы обеззараживания воды автора Хохрякова Елена Анатольевна

4.2. Механизм пластической деформации Пластическая деформация осуществляется посредством сдвига внутри кристалла по определенным кристаллографическим плоскостям, которые называются плоскостями скольжения. Сдвиг в кристалле начинается при достижении внешним

Из книги Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г. автора Коллектив авторов

Глава 1 История возникновения ткачества

Из книги автора

8.3.6.3. Другие риски возникновения судебных разбирательств Внешне ситуация выглядит простой, поскольку университеты действительно крайне заинтересованы в распространении и продаже разрабатываемых технологий, а фирмы желают их приобрести, но дополнительную сложность

Из книги автора

5.1.3. Механизм воздействия Сегодня существуют многочисленные теории, объясняющие механизм действия серебра на микроорганизмы. Наиболее распространенная – адсорбционная теория, в соответствии с которой клетка теряет жизнеспособность в результате взаимодействия

Из книги автора

5.2.2. Механизм воздействия Исследования по выяснению механизма антибактериального действия меди проводили еще в давние времена. Например, в 1973 г. ученые из лаборатории «Колумбус Баттел» провели всесторонний научный и патентный поиск, в котором собрали всю историю