Природный хлор. Хлор элемент

17.01.2024

В природе хлор встречается в газообразном состоянии и только в виде соединений с другими газами. В условиях, приближенных к нормальным, это ядовитый едкий газ зеленоватого цвета. Имеет больший вес, чем воздух. Обладает сладким запахом. Молекула хлора содержит два атома. В спокойном состоянии не горит, но при высоких температурах входит во взаимодействие с водородом, после чего возможен взрыв. В результате выделяется газ фосген. Очень ядовит. Так, даже при малой концентрации в воздухе (0,001 мг на 1 дм 3) может вызвать летальный исход. хлора гласит, что он тяжелее воздуха, следовательно, всегда будет находиться у самого пола в виде желтовато-зеленой дымки.

Исторические факты

Впервые на практике это вещество было получено К. Шелее в 1774 г. путем соединения соляной кислоты и пиролюзита. Однако лишь в 1810 г. П. Дэви смог дать характеристику хлору и установить, что это отдельный химический элемент.

Стоит отметить, что в 1772 г. смог получить хлороводород - соединение хлора с водородом, однако разделить эти два элемента химик не смог.

Химическая характеристика хлора

Хлор - химический элемент основной подгруппы VII группы таблицы Менделеева. Находится в третьем периоде и имеет атомный номер 17 (17 протонов в атомном ядре). Химически активный неметалл. Обозначается буквами Cl.

Является типичным представителем газы, не имеющие цвета, но обладающие резким едким запахом. Как правило, токсичны. Все галогены хорошо разбавляются в воде. При контакте с влажным воздухом начинают дымиться.

Внешняя электронная конфигурация атома Cl 3s2Зр5. Следовательно, в соединениях химический элемент проявляет уровни окисления -1,+1, +3, +4, +5, +6 и +7. Ковалентный радиус атома 0,96Å, ионный радиус Cl- 1.83 Å, сродство атома к электрону 3,65 эв, уровень ионизации 12,87 эв.

Как указано выше, хлор представляет собой довольно активный неметалл, что позволяет создавать соединения практически с любыми металлами (в отдельных случаях при помощи нагревания или с помощью влаги, вытесняя при этом бром) и неметаллами. В порошкообразной форме реагирует с металлами только под действием высоких температур.

Максимальная температура горения - 2250 °С. С кислородом способен образовывать оксиды, гипохлориты, хлориты и хлораты. Все соединения, содержащие кислород, становятся взрывоопасными в условиях взаимодействия с окисляющимися веществами. Стоит отметить, что могут произвольно взрываться, в то время как хлораты взрываются лишь при воздействии на них какими-либо инициаторами.

Характеристика хлора по положению в периодической системе:

Простое вещество;
. элемент семнадцатой группы периодической таблицы;
. третий период третьего ряда;
. седьмая группа главной подгруппы;
. атомный номер 17;
. обозначается символом Cl;
. химически активный неметалл;
. находится в группе галогенов;
. в условиях, приближенных к нормальным, это ядовитый газ желтовато-зелёного цвета с едким запахом;
. молекула хлора имеет 2 атома (формула Cl 2).

Физические свойства хлора:

Температура кипения: -34,04 °С;
. температура плавления: -101,5 °С;
. плотность в газообразном состоянии - 3 ,214 г/л;
. плотность жидкого хлора (в период кипения) - 1,537 г/см 3 ;
. плотность твердого хлора - 1,9 г/см 3 ;
. удельный объем - 1,745 х 10 -3 л/г.

Хлор: характеристика температурных изменений

В газообразном состоянии имеет свойство легко сжижаться. При давлении в 8 атмосфер и температуре 20 °С выглядит как зеленовато-желтая жидкость. Обладает очень высокими коррозионными свойствами. Как показывает практика, этот химический элемент может сохранять жидкое состояние вплоть до критической температуры (143 °С), при условии увеличения давления.

Если его охладить до температуры -32 °С, он изменит свое на жидкое вне зависимости от атмосферного давления. При дальнейшем понижении температуры происходит кристаллизация (при показателе -101 °С).

Хлор в природе

В земной коре хлора содержится всего 0,017 %. Основная масса находится в вулканических газах. Как указано выше, вещество имеет большую химическую активность, вследствие чего в природе встречается в соединениях с другими элементами. При этом множество минералов содержат хлор. Характеристика элемента позволяет образовывать порядка ста различных минералов. Как правило, это хлориды металлов.

Также большое его количество находится в Мировом океане - почти 2 %. Это обусловлено тем, что хлориды очень активно растворяются и разносятся с помощью рек и морей. Возможен и обратный процесс. Хлор вымывается обратно на берег, а далее ветер разносит его по окрестностям. Именно поэтому наибольшая его концентрация наблюдается в прибрежных зонах. В засушливых районах планеты рассматриваемый нами газ образуется при помощи испарения воды, вследствие чего появляются солончаки. Ежегодно в мире добывают порядка 100 млн тонн данного вещества. Что, впрочем, неудивительно, ведь существует много месторождений, содержащих хлор. Характеристика его, однако, во многом зависит именно от его географического положения.

Методы получения хлора

Сегодня существует ряд методов получения хлора, из которых наиболее распространены следующие:

1. Диафрагменный. Является самым простым и менее затратным. Соляной раствор в диафрагменном электролизе поступает в пространство анода. Далее по стальной катодной сетке перетекает в диафрагму. В ней находится небольшое количество полимерных волокон. Важной особенностью этого устройства является противоток. Он направлен из анодного пространства в катодное, что позволяет отдельно получить хлор и щелоки.

2. Мембранный. Наиболее энергоэффективен, но сложноосуществим в организации. Схож с диафрагменным. Различие состоит в том, что анодное и катодное пространства полностью разделены мембраной. Следовательно, на выходе получаются два отдельных потока.

Стоит отметить, что характеристика хим. элемента (хлора), полученного данными методами, будет иной. Более "чистым" принято считать мембранный метод.

3. Ртутный метод с жидким катодом. По сравнению с остальными технологиями, этот вариант позволяет получать наиболее чистый хлор.

Принципиальная схема установки состоит из электролизера и соединенных между собой насоса и разлагателя амальгамы. В качестве катода служит перекачиваемая насосом ртуть вместе с раствором поваренной соли, а в качестве анода - угольные или графитовые электроды. Принцип действия установки следующий: из электролита выделяется хлор, который отводится из электролизера вместе с анолитом. Из последнего удаляют примеси и остатки хлора, донасыщают галитом и снова возвращают на электролиз.

Требования промышленной безопасности и нерентабельность производства привели к замене жидкого катода твердым.

Применение хлора в промышленных целях

Свойства хлора позволяют активно применять его в промышленности. С помощью этого химического элемента получают различные (винилхлорид, хлоро-каучук и др.), лекарственные препараты, дезинфицирующие средства. Но самая большая ниша, занятая в промышленности, это производство соляной кислоты и извести.

Широко применяются методы очищения питьевой воды. На сегодняшний день пытаются отойти от этого метода, заменив его озонированием, поскольку рассматриваемое нами вещество негативно влияет на организм человека, к тому же хлорированная вода разрушает трубопроводы. Вызвано это тем, что в свободном состоянии Cl пагубно влияет на трубы, изготовленные из полиолефинов. Тем не менее большинство стран отдает предпочтение именно методу хлорирования.

Также хлор применяется в металлургии. С его помощью получают ряд редких металлов (ниобий, тантал, титан). В химической промышленности активно используют различные хлорорганические соединения для борьбы против сорняков и для других сельскохозяйственных целей, используется элемент и в качестве отбеливателя.

Благодаря своей химической структуре хлор разрушает большинство органических и неорганических красителей. Достигается это путем полного их обесцвечивания. Такой результат возможен лишь при условии присутствия воды, ведь процесс обесцвечивания происходит благодаря который образуется после распада хлора: Cl 2 + H 2 O → HCl + HClO → 2HCl + O. Данный способ нашел применение пару веков назад и пользуется популярностью и по сей день.

Очень популярно применение этого вещества для получения хлорорганических инсектицидов. Эти сельскохозяйственные препараты убивают вредоносные организмы, оставляя нетронутыми растения. Значительная часть всего добываемого на планете хлора уходит на сельскохозяйственные нужды.

Также используется он при производстве пластикатов и каучука. С их помощью изготавливают изоляцию проводов, канцелярские товары, аппаратуру, оболочки бытовой техники и т. д. Бытует мнение, что каучуки, полученные таким образом, вредят человеку, но это не подтверждено наукой.

Стоит отметить, что хлор (характеристика вещества была подробно раскрыта нами ранее) и его производные, такие как иприт и фосген, применяются и в военных целях для получения боевых отравляющих средств.

Хлор как яркий представитель неметаллов

Неметаллы - простые вещества, которые включают в себя газы и жидкости. В большинстве случаев они хуже проводят электрический ток, чем металлы, и имеют существенные различия в физико-механических характеристиках. При помощи высокого уровня ионизации способны образовывать ковалентные химические соединения. Ниже будет дана характеристика неметалла на примере хлора.

Как уже было сказано выше, этот химический элемент представляет собой газ. В нормальных условиях у него полностью отсутствуют свойства, сходные с таковыми у металлов. Без сторонней помощи не может взаимодействовать с кислородом, азотом, углеродом и др. Свои окислительные свойства проявляет в связях с простыми веществами и некоторыми сложными. Относится к галогенам, что ярко отражается на его химических особенностях. В соединениях с остальными представителями галогенов (бром, астат, йод), вытесняет их. В газообразном состоянии хлор (характеристика его - прямое тому подтверждение) хорошо растворяется. Является отличным дезинфектором. Убивает только живые организмы, что делает его незаменимым в сельском хозяйстве и медицине.

Применение в качестве отравляющего вещества

Характеристика атома хлора позволяет применять его как отравляющее средство. Впервые газ был применен Германией 22.04.1915 г., в ходе Первой мировой войны, вследствие чего погибло порядка 15 тыс. человек. На данный момент как не применяется.

Дадим краткую характеристику химического элемента как удушающего средства. Влияет на организм человека посредством удушения. Сначала оказывает раздражение верхних дыхательных путей и слизистой оболочки глаз. Начинается сильный кашель с приступами удушья. Далее, проникая в легкие, газ разъедает легочную ткань, что приводит к отеку. Важно! Хлор является быстродействующим веществом.

В зависимости от концентрации в воздухе, симптоматика бывает разной. При малом содержании у человека наблюдается покраснение слизистой оболочки глаз, легкая одышка. Содержание в атмосфере 1,5-2 г/м 3 вызывает тяжесть и острые ощущения в груди, резкую боль в верхних дыхательных путях. Также состояние может сопровождаться сильным слезотечением. После 10-15 минут нахождения в помещении с такой концентрацией хлора наступает сильный ожог легких и смерть. При более плотных концентрациях смерть возможна в течение минуты от паралича верхних дыхательных путей.

Хлор в жизни организмов и растений

Хлор входит в состав практически всех живых организмов. Особенность состоит в том, что присутствует он не в чистом виде, а в виде соединений.

В организмах животных и человека ионы хлора поддерживают осмотическое равенство. Вызвано это тем, что они имеют наиболее подходящий радиус для проникновения в мембранные клетки. Наряду с ионами калия Cl регулирует водно-солевой баланс. В кишечнике ионы хлора создают благоприятную среду для действия протеолитических ферментов желудочного сока. Хлорные каналы предусмотрены во многих клетках нашего организма. Посредством их происходит межклеточный обмен жидкостями и поддерживается pH клетки. Порядка 85 % от общего объема этого элемента в организме пребывает в межклеточном пространстве. Выводится из организма по мочеиспускательным каналам. Вырабатывается женским организмом в процессе кормления грудью.

На данном этапе развития тяжело однозначно сказать, какие именно заболевания провоцирует хлор и его соединения. Связано это с недостатком исследований в этой области.

Также ионы хлора присутствуют в клетках растений. Он активно принимает участие в энергетическом обмене. Без этого элемента невозможен процесс фотосинтеза. С его помощью корни активно впитывают необходимые вещества. Но большая концентрация хлора в растениях способна оказывать пагубное влияние (замедление процесса фотосинтеза, остановка развития и роста).

Однако существуют такие представители флоры, которые смогли "подружиться" или хотя бы ужиться с данным элементом. Характеристика неметалла (хлора) содержит такой пункт, как способность вещества окислять почвы. В процессе эволюции упомянутые выше растения, называемые галофитами, заняли пустые солончаки, которые пустовали из-за переизбытка этого элемента. Они впитывают ионы хлора, а после избавляются от них при помощи листопада.

Транспортировка и хранение хлора

Существует несколько способов перемещать и хранить хлор. Характеристика элемента предполагает необходимость специальных баллонов с высоким давлением. Такие емкости имеют опознавательную маркировку - вертикальную зеленую линию. Ежемесячно баллоны необходимо тщательно промывать. При длительном хранении хлора в них образуется очень взрывоопасный осадок - трихлорид азота. При несоблюдении всех правил безопасности возможно самопроизвольное воспламенение и взрыв.

Изучение хлора

Будущим химикам должна быть известна характеристика хлора. По плану 9-классники могут даже ставить лабораторные опыты с этим веществом на основе базовых знаний по дисциплине. Естественно, преподаватель обязан провести инструктаж по технике безопасности.

Порядок работ следующий: необходимо взять колбу с хлором и насыпать в неё мелкую металлическую стружку. В полете стружка вспыхнет яркими светлыми искрами и одновременно образуется легкий белый дым SbCl 3 . При погружении в сосуд с хлором оловянной фольги она также самовоспламенится, а на дно колбы медленно опустятся огненные снежинки. Во время этой реакции образуется дымная жидкость - SnCl 4 . При помещении железной стружки в сосуде образуются красные «капли» и появится рыжий дым FeCl 3 .

Наряду с практическими работами повторяется теория. В частности, такой вопрос, как характеристика хлора по положению в периодической системе (описана в начале статьи).

В результате опытов выясняется, что элемент активно реагирует на органические соединения. Если поместить в банку с хлором вату, смоченную предварительно в скипидаре, то она мгновенно воспламенится, и из колбы резко повалит сажа. Эффектно тлеет желтоватым пламенем натрий, а на стенках химпосуды появляются кристаллы соли. Ученикам будет небезынтересно узнать, что, будучи ещё молодым химиком, Н. Н. Семенов (впоследствии лауреат Нобелевской премии), проведя такой опыт, собрал со стенок колбы соль и, посыпав ею хлеб, съел его. Химия оказалась права и не подвела ученого. В результате проведенного химиком опыта действительно получилась обычная поваренная соль!

Как бы мы негативно ни относились к общественным уборным, природа диктует свои правила, и посещать их приходится. Помимо естественных (для данного места) запахов, еще одним привычным ароматом является хлорка, используемая для дезинфекции помещения. Свое название она получила из-за главного действующего вещества в ней - Cl. Дайте узнаем об этом химическом элементе и его свойствах, а также дадим характеристику хлора по положению в периодической системе.

Как был открыт этот элемент

Впервые хлорсодержащее соединение (HCl) было синтезировано в 1772 г. британским священником Джозефом Пристли.

Через 2 года его шведский коллега Карл Шееле сумел описать способ выделения Cl с помощью реакции между соляной кислотой и диоксидом марганца. Однако этот химик так и не понял, что в результате синтезируется новый химический элемент.

Почти 40 лет понадобилось ученым, чтобы научиться добывать хлор на практике. Впервые это было сделано британцем Гемфри Дэви в 1811 г. При этом он использовал другую реакцию, нежели его предшественники-теоретики. Дэви при помощи электролиза разложил на составляющие NaCl (известный большинству как кухонная соль).

Изучив полученное вещество, британский химик осознал, что оно является элементарным. После этого открытия Дэви не только назвал его - chlorine (хлорин), но и смог дать характеристику хлора, правда она была весьма примитивной.

Хлорин превратился в хлор (chlore) благодаря Жозефу Гей-Люссаку и в таком виде существует в французском, немецком, российском, белорусском, украинском, чешском, болгарском и некоторых других языках и сегодня. В английском по сей день употребляется название "хлорин", а в итальянском и испанском "хлоро".

Более подробно рассматриваемый элемент был описан Йенсом Берцелиусом в 1826 г. Именно он смог определить его атомную массу.

Что такое хлор (Cl)

Рассмотрев историю открытия данного химического элемента, стоит узнать о нем подробнее.

Название chlorine было образовано от греческого слова χλωρός («зеленый»). Дано оно было из-за желтовато-зеленоватого цвета данного вещества

Самостоятельно хлор существует как двухатомный газ Cl 2, однако в таком виде в природе он практически не встречается. Чаще он фигурирует в различных соединениях.

Помимо отличительного оттенка, для хлора характерен сладковато-едкий запах. Он является очень ядовитым веществом, поэтому при попадании в воздух и вдыхании человеком или животным способен в течение нескольких минут привести к их гибели (зависит от концентрации Cl).

Поскольку хлор тяжелее воздуха почти в 2,5 раза, он всегда будет находиться ниже его, то есть у самой земли. По этой причине при подозрении на наличие Cl следует забраться как можно выше, так как там будет меньшая концентрация данного газа.

Также, в отличие от некоторых других ядовитых веществ, хлорсодержащие обладают характерным цветом, что может позволить зрительно их идентифицировать и принять меры. Большинство стандартных противогазов помогают защитить органы дыхания и слизистые оболочки от поражения Cl. Однако для полной безопасности нужно принимать более серьезные меры, вплоть до нейтрализации ядовитого вещества.

Стоит отметить, что именно с применения немцами хлора как отравляющего газа в 1915 г. начало свою историю химическое оружие. В результате использования почти 200 тонн вещества было за несколько минут отравлено 15 тысяч человек. Треть из них умерла почти мгновенно, треть получила перманентные повреждения, и лишь 5 тысячам удалось спастись.

Почему же столь опасное вещество до сих пор не запрещено и ежегодно добывается миллионами тонн? Все дело в его особых свойствах, а чтобы понять их, стоит рассмотреть характеристику хлора. Проще всего это сделать с помощью таблицы Менделеева.

Характеристика хлора в периодической системе


Хлор как галоген

Помимо крайней токсичности и едкого запаха (характерных для всех представителей данной группы) Cl отлично растворяется в воде. Практическое подтверждение этому - добавление хлорсодержащих моющих средств в воду для бассейнов.

При контакте с влажным воздухом рассматриваемое вещество начинает дымиться.

Свойства Cl как неметалла

Рассматривая химическую характеристику хлора, стоит обратить внимание на его неметаллические свойства.

Он имеет способность образовывать соединения практически со всеми металлами и неметаллами. В качестве примера можно привести реакцию с атомами железа: 2Fe + 3Cl 2 → 2FeCl 3.

Часто для проведения реакций необходимо использовать катализаторы. В этой роли может выступать Н 2 О.

Нередко реакции с Cl носят эндотермический характер (поглощают тепло).

Стоит отметить, что в кристаллической форме (в виде порошка) хлор взаимодействует с металлами лишь при нагревании до высоких температур.

Реагируя с другими неметаллами (кроме О 2 , N, F, С и инертных газов), Cl образует соединения - хлориды.

При реакции с О 2 образуются крайне нестабильные и склонные к распаду оксиды. В них степень окисления Cl способна проявляться от +1 до +7.

При взаимодействии с F образуются фториды. Степень окисления их может быть разной.

Хлор: характеристика вещества с точки зрения его физических свойств

Помимо химических свойств, рассматриваемый элемент имеет и физические.


Влияние температуры на агрегатное состояние Cl

Рассмотрев физическую характеристику элемента хлора, мы понимаем, что он способен переходить в разные агрегатные состояния. Все зависит от температурного режима.

В нормальном состоянии Cl - это газ, обладающий высокими коррозийными свойствами. Однако он с легкостью способен сжижаться. На это влияет температура и давление. К примеру, если оно равно 8 атмосферам, а температура - +20 градусам по Цельсию, Cl 2 - кислотно-желтая жидкость. Данное агрегатное состояние он способен сохранять до +143 градусов, если давление также продолжает повышаться.

При достижении -32 °С состояние хлора перестает зависеть от давления, и он продолжает оставаться жидким.

Кристаллизация вещества (твердое состояние) происходит при -101 градусе.

Где в природе существует Cl

Рассмотрев общую характеристику хлора, стоит узнать, где же в природе может встречаться столь непростой элемент.

Из-за своей высокой реакционной активности он практически никогда не встречается в чистом виде (поэтому в начале изучения учеными этого элемента понадобились годы, чтобы научиться его синтезировать). Обычно Cl находится в составе соединений в различных минералах: галит, сильвин, каинит, бишофит и т. п.

Более всего он содержится в солях, добытых из морской или океанической воды.

Влияние на организм

При рассмотрении характеристики хлора уже было не раз сказано, что он крайне ядовит. При этом атомы вещества содержатся не только в минералах, но и практически во всех организмах, начиная от растений до человека.

Из-за особых свойств ионы Cl лучше других проникают сквозь мембраны клеток (поэтому более 80 % всего хлора в теле человека находится в межклеточном пространстве).

Вместе с К, Cl ответственен за регуляцию водно-солевого баланса и как следствие - за осмотическое равенство.

Несмотря на столь важную роль в организме, в чистом виде Cl 2 убивает все живое - от клеток до целых организмов. Однако в контролированных дозах и при кратковременном воздействии он не успевает причинить повреждений.

Ярким примером последнему утверждению служит любой бассейн. Как известно, воду в таких учреждениях дезинфицируют при помощи Cl. При этом, если человек редко посещает такое заведение (раз в неделю или в месяц) - маловероятно, что он пострадает от наличия данного вещества в воде. Однако работники таких учреждений, особенно те, кто почти весь день пребывают в воде (спасатели, инструкторы) часто страдают кожными заболеваниями или имеют ослабленный иммунитет.

В связи со всем этим после посещения бассейнов обязательно нужно принять душ - чтобы смыть возможные остатки хлора с кожи и волос.

Использования Cl человеком

Помня из характеристики хлора, что он является «капризным» элементом (когда дело доходит до взаимодействия с другими веществами), интересно будет узнать, что в промышленности он весьма часто используется.

В первую очередь с его помощью производится дезинфекция многих веществ.

Также Cl применяется при изготовлении некоторых видов пестицидов, что помогает спасать урожай от вредителей.

Способность этого вещества взаимодействовать почти со всеми элементами таблицы Менделеева (характеристика хлора как неметалла) помогает с его помощью добывать некоторые виды металлов (Ті, Та и Nb), а также известь и соляную кислоту.

Помимо всего вышеперечисленного Cl применяют при производстве промышленных веществ (поливинилхлорид) и медицинских препаратов (хлоргексидин).

Стоит упомянуть, что сегодня найдено более эффективное и безопасное дезинфицирующее средство - озон (О 3 ). Однако его производство более дорогостоящее, чем хлора, и этот газ еще более нестабилен, нежели хлор (краткая характеристика физических свойств в 6-7 п.). Поэтому применять озонирование вместо хлорирования пока могут позволить себе немногие.

Как добывается хлор

Сегодня известно немало способов для синтеза данного вещества. Все они делятся на две категории:

  • Химические.
  • Электрохимические.

В первом случае Cl получают вследствие химической реакции. Однако на практике они весьма затратные и малопроизводительны.

Поэтому в промышленности предпочитают электрохимические методы (электролиз). Их три: диафрагменный, мембранный и ртутный электролиз.

ОПРЕДЕЛЕНИЕ

Хлор – химический элемент VII группы 3 периода Периодической системы химических элементов Д.И. Менделеева. Неметалл.

Относится к элементам – p -семейства. Галоген. Порядковый номер – 17. Строение внешнего электронного уровня – 3s 2 3 p 5 . Относительная атомная масса – 35,5 а.е.м. Молекула хлора двухатомна – Cl 2 .

Химические свойства хлора

Хлор реагирует с простыми веществами металлами:

Cl 2 + 2Sb = 2SbCl 3 (t);

Cl 2 + 2Fe = 2FeCl 3 ;

Cl 2 + 2Na = 2NaCl.

Хлор взаимодействует с простыми веществами неметаллами. Так, при взаимодействии с фосфором и серой образуются соответствующие хлориды, с фтором – фториды, с водородом – хлороводород, с кислородом – оксиды и т.д.:

5Cl 2 + 2P = 2HCl 5 ;

Cl 2 + 2S = SCl 2 ;

Cl 2 + H 2 = 2HCl;

Cl 2 + F 2 = 2ClF.

Хлор способен вытеснять бром и йод из их соединений с водородом и металлами:

Cl 2 + 2HBr = Br 2 + 2HCl;

Cl 2 + 2NaI = I 2 + 2NaCl.

Хлор способен растворяться в воде и щелочах, при этом происходят реакции диспропорционирования хлора, а состав продуктов реакции зависит от условий её проведения:

Cl 2 + H 2 O ↔ HCl + HClO;

Cl 2 + 2NaOH = NaCl + NaClO + H 2 O;

3 Cl 2 + 6NaOH = 5NaCl + NaClO 3 + 3H 2 O.

Хлор взаимодействует с несолеобразующим оксидом – СО с образованием вещества с тривиальным названием – фосген, с аммиаком с образованием трихлорида аммония:

Cl 2 + CO = COCl 2 ;

3 Cl 2 + 4NH 3 = NCl 3 + 3NH 4 Cl.

В реакциях хлор проявляет свойства окислителя:

Cl 2 + H 2 S = 2HCl + S.

Хлор вступает в реакции взаимодействия с органическими веществами класса алканов, алкенов и аренов:

CH 3 -CH 3 + Cl 2 = CH 3 -CH 2 -Cl + HCl (условие – УФ-излучение);

CH 2 = CH 2 + Cl 2 = CH 2 (Cl)-CH 2 -Cl;

C 6 H 6 + Cl 2 = C 6 H 5 -Cl + HCl (kat = FeCl 3 , AlCl 3);

C 6 H 6 + 6Cl 2 = C 6 H 6 Cl 6 + 6HCl (условие – УФ-излучение).

Физические свойства хлора

Хлор – газ желто-зеленого цвета. Термически устойчив. При насыщении охлажденной воды хлором образуется твердый кларат. Хорошо растворяется в воде, в большой степени подвергается дисмутации («хлорная вода»). Растворяется тетрахлориде углерода, жидких SiCl 4 и TiCl 4 . Плохо растворяется в насыщенном растворе хлорида натрия. Не реагирует с кислородом. Сильный окислитель. Температура кипения — -34,1С, плавления — -101,03С.

Получение хлора

Ранее хлор получали по методу Шееле (реакция взаимодействия оксида марганца (VI) c соляной кислотой) или по методу Дикона (реакция взаимодействия хлороводорода с кислородом):

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O;

4HCl + O 2 = 2H 2 O + 2 Cl 2 .

В наше время для получения хлора используют следующие реакции:

NaOCl + 2HCl = NaCl + Cl 2 + H 2 O;

2KMnO 4 + 16HCl = 2KCl + 2MnCl 2 +5 Cl 2 +8H 2 O;

2NaCl + 2H 2 O = 2NaOH + Cl 2 + H 2 (условие – электролиз).

Применение хлора

Хлор нашел широкое применение в различных областях промышленности, так его используют в производстве полимерных материалов (поливинилхлорид), отбеливателей, хлорорганических инсектицидов (гексахлоран), боевых отравляющих веществ (фосген), для обеззараживания воды, в пищевой промышленности, в металлургии и т.д.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Какой объем, масса и количество вещества хлора выделится (н.у.) при взаимодействии 17,4 г оксида марганца (IV) с соляной кислотой, взятой в избытке?
Решение Запишем уравнение реакции взаимодействия оксида марганца (IV) с соляной кислотой:

4HCl + MnO 2 = MnCl 2 + Cl 2 + 2H 2 O.

Молярные массы оксида марганца (IV) и хлора, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 87 и 71 г/моль, соответственно. Рассчитаем количество вещества оксида марганца (IV):

n(MnO 2) = m(MnO 2) / M(MnO 2);

n(MnO 2) = 17,4 / 87 = 0,2 моль.

Согласно уравнению реакции n(MnO 2): n(Cl 2) = 1:1, следовательно, n(Cl 2) = n(MnO 2) = 0,2 моль. Тогда масса и объем хлора будут равны:

m(Cl 2) = 0,2 × 71 = 14,2 г;

V(Cl 2) = n(Cl 2)×V m = 0,2×22,4 = 4,48 л.

Ответ Количество вещества хлора – 0,2 моль, масса – 14,2 г, объем – 4,48 л.

Характеристика элементов VII группы главной подгруппы, на примере хлора

Общая характеристика подгруппы

Таблица 1. Номенклатура элементов подгруппы VIIА

P-элементы, типические, неметаллы (астат - полуметалл), галогены.

Электронная диаграмма элемента Hal (Hal ≠ F):

Для элементов подгруппы VIIA характерны следующие валентности:

Таблица 2. Валентность

3. Для элементов подгруппы VIIA характерны следующие степени окисления:

Таблица 3. Степени окисления элементов

Характеристика химического элемента

Хлор – элемент VII А группы. Порядковый номер 17

Относительная атомная масса: 35,4527 а. е. м. (г/моль)

Количество протонов, нейтронов, электронов: 17,18,17

Строение атома:

Электронная формула:

Типичные степени окисления: -1, 0, +1, +3, +4, +5, +7

Энергия ионизации: 1254,9(13,01) кДж/моль (эВ)

Сродство к электрону: 349 (кДж/моль)

Электроотрицательность по Полингу: 3,20

Характеристика простого вещества

Тип связи: ковалентная неполярная

Молекула двухатомная

Изотопы: 35 Cl (75,78 %) и 37 Cl(24,22 %)

Тип кристаллической решетки: молекулярная

Термодинамические параметры

Таблица 4

Физические свойства

Таблица 5



Химические свойства

Водный раствор хлора в большой степени подвергается дисмутации («хлорная вода»)

1 стадия: Cl 2 + H 2 O = HCl + HOCl

2 стадия: HOCl = HCl + [О] – атомарный кислород

Окислительная способность в подгруппе уменьшается от фтора к йоду = ˃

Хлор сильный окислитель:

1. Взаимодействие с простыми веществами

a) с водородом:

Cl 2 + H 2 = 2HCl

б) с металлами:

Cl 2 + 2Na = 2NaCl

3Cl 2 + 2Fe = 2FeCl 3

в) с некоторыми менее электроотрицательными неметаллами:

3Cl 2 + 2P = 2PCl 3

Cl 2 + S = SCl 2

С кислородом, углеродом и азотом хлор непосредственно не реагирует!

2. Взаимодействие со сложными веществами

а) с водой: см. выше

б) с кислотами: не реагирует!

в) с растворами щелочей:

на холоду: Cl 2 +2 NaOH = NaCl + NaClO + H 2 O

при нагревании: 3Cl 2 + 6 KOH = 5KCl + KClO 3 + 3H 2 O

д) со многими органическими веществами:

Cl 2 + CH 4 = CH 3 Cl + HCl

C 6 H 6 + Cl 2 = C 6 H 5 Cl + HCl

Важнейшие соединения хлора

Хло́роводоро́д, хло́ристый водоро́д (HCl) - бесцветный, термически устойчивый газ (при нормальных условиях) с резким запахом, дымящий во влажном воздухе, легко растворяется в воде (до 500 объёмов газа на один объём воды) с образованием хлороводородной (соляной) кислоты. При −114,22 °C HCl переходит в твёрдое состояние. В твёрдом состоянии хлороводород существует в виде двух кристаллических модификаций: ромбической, устойчивой ниже и кубической.

Водный раствор хлористого водорода называется соляной кислотой. При растворении в воде протекают следующие процессы:

HCl г + H 2 O ж = H 3 O + ж + Cl − ж

Процесс растворения сильно экзотермичен. С водой HCl образует азеотропную смесь. Является сильной одноосновной кислотой. Энергично взаимодействует со всеми металлами, стоящими в ряду напряжений левее водорода, с основными и амфотерными оксидами,основаниями и солями, образуя соли - хлориды :

Mg + 2 HCl → MgCl 2 + H 2

FeO + 2 HCl → FeCl 2 + H 2 O

При действии сильных окислителей или при электролизе хлороводород проявляет восстановительные свойства:

MnO 2 + 4 HCl → MnCl 2 + Cl 2 + 2 H 2 O

При нагревании хлороводород окисляется кислородом (катализатор - хлорид меди(II) CuCl 2):

4 HCl + O 2 → 2 H 2 O +2 Cl 2

Однако, концентрированная соляная кислота реагирует с медью, при этом образуется комплекс одновалентной меди:

2 Cu + 4 HCl → 2 H + H 2

Смесь 3 объемных частей концентрированной соляной и 1 объемной доли концентрированной азотной кислот называется «царской водкой». Царская водка способна растворять даже золото и платину. Высокая окислительная активность царской водки обусловлена присутствием в ней хлористого нитрозила и хлора, находящихся в равновесии с исходными веществами:

4 H 3 O + + 3 Cl − + NO 3 − = NOCl + Cl 2 + 6 H 2 O

Благодаря высокой концентрации хлорид-ионов в растворе металл связывается в хлоридный комплекс, что способствует его растворению:

3 Pt + 4 HNO 3 + 18 HCl → 3 H 2 + 4 NO + 8 H 2 O

Для хлороводорода также характерны реакции присоединения к кратным связям (электрофильное присоединение):

R-CH=CH 2 + HCl → R-CHCl-CH 3

R-C≡CH + 2 HCl → R-CCl 2 -CH 3

Оксиды хлора - неорганические химические соединения хлора и кислорода, общей формулой: Cl х O у.
Хлор образует следующие оксиды: Cl 2 O, Cl 2 O 3 , ClO 2 , Cl 2 O 4 , Cl 2 O 6 , Cl 2 O 7 . Кроме того известны: короткоживущий радикал ClO, радикал пероксид хлора ClOO и радикал тетраоксид хлора ClO 4 .
Ниже в таблице представлены свойства устойчивых оксидов хлора:

Таблица 6

Свойство Cl 2 O ClO 2 ClOClO 3 Cl 2 O 6 (ж)↔2ClO 3 (г) Cl 2 O 7
Цвет и состояние при комн. температуре Жёлто-коричневый газ Жёлто-зелёный газ Светло-жёлтая жидкость Тёмно-красная жидкость Бесцветная жидкость
Степень окисления хлора (+1) (+4) (+1), (+7) (+6) (+7)
Т. пл., °C −120,6 −59 −117 3,5 −91,5
Т. кип., °C 2,0 44,5
d (ж, 0°C), г*см -3 - 1,64 1,806 - 2,02
ΔH° обр (газ, 298 К), кДж*моль -1 80,3 102,6 ~180 (155)
ΔG° обр (газ, 298 К), кДж*моль -1 97,9 120,6 - - -
S° обр (газ, 298 К), Дж*K -1 *моль -1 265,9 256,7 327,2 - -
Дипольный момент μ, Д 0,78 ± 0,08 1,78 ± 0,01 - - 0,72 ± 0,02

Оксид хлора (I), оксид дихлора, ангидрид хлорноватистой кислоты - соединение хлора в степени окисления +1 с кислородом.

В нормальных условиях представляет собой буровато-жёлтый газ с характерным запахом, напоминающим запах хлора. При температурах ниже 2 °C - жидкость золотисто-красного цвета. Ядовит: поражает дыхательные пути. Самопроизвольно медленно разлагается:

При больших концентрациях взрывоопасен. Плотность при нормальных условиях 3,22 кг/м³. Растворяется в четырёххлористом углероде. Хорошо растворим в воде с образованием слабой хлорноватистой кислоты:

Быстро реагирует со щелочами:

Cl 2 O + 2NaOH (разб.) = 2NaClO + H 2 O

Диоксид хлора - кислотный оксид. При растворении в воде образуются хлористая и хлорноватая кислоты (реакция диспропорционирования). Разбавленные растворы устойчивы в темноте, на свету медленно разлагаются:

Диоксид хлора - оксид хлора (IV ), соединение хлора и кислорода, формула: ClO 2 .

В нормальных условиях ClO 2 - газ красновато-жёлтого цвета, с характерным запахом. При температурах ниже 10 °C ClO 2 представляет собой жидкость красно-коричневого цвета. Малоустойчив, взрывается на свету, при контактах с окислителями и при нагревании. Хорошо растворим в воде. Из-за взрывоопасности диоксид хлора невозможно хранить в виде жидкости.

Кислотный оксид. При растворении в воде образуются хлористая и хлорноватая кислоты (реакция диспропорционирования). Разбавленные растворы устойчивы в темноте, на свету медленно разлагаются:

Образующаяся хлористая кислота очень неустойчива и разлагается:

Проявляет окислительно-восстановительные свойства.

2ClO 2 + 5H 2 SO 4 (разб.) + 10FeSO 4 = 5Fe 2 (SO 4) 3 + 2HCl + 4H 2 O

ClO 2 + 2NaOH хол. = NaClO 2 + NaClO 3 + H 2 O

ClO 2 + O 3 = ClO 3 + O 2

ClO 2 реагирует со многими с органическими соединениями и выступает окислителем средней силы.

Хлорноватистая кислота - HClO, очень слабая одноосновная кислота, в которой хлор имеет степень окисления +1. Существует лишь в растворах.

В водных растворах хлорноватистая кислота частично распадается на протон и гипохлорит-анион ClO − :

Неустойчива. Хлорноватистая кислота и её соли - гипохлориты - сильные окислители. Реагирует с соляной кислотой HCl, образуя молекулярный хлор:

HClO + NaOH (разб.) = NaClO + H 2 O

Хлористая кислота - HClO 2 , одноосновная кислота средней силы.

Хлористая кислота НClO 2 в свободном виде неустойчива, даже в разбавленном водном растворе она быстро разлагается:

Нейтрализуется щелочами.

HClO 2 + NaOH (разб. хол.) = NaClO 2 + H 2 O

Ангидрид этой кислоты неизвестен.

Раствор кислоты получают из её солей - хлоритов , образующихся в результате взаимодействия ClO 2 со щёлочью:

Проявляет окислительно – восстановительные свойства.

5HClO 2 + 3H 2 SO 4 (разб.) + 2KMnO 4 = 5HClO 3 + 2MnSO 4 + K 2 SO 4 + 3H 2 O

Хлорноватая кислота - HClO 3 , сильная одноосновная кислота, в которой хлор имеет степень окисления +5. В свободном виде не получена; в водных растворах при концентрации ниже 30% на холоде довольно устойчива; в более концентрированных растворах распадается:

Хлорноватая кислота - сильный окислитель; окислительная способность увеличивается с возрастанием концентрации и температуры. HClO 3 легко восстанавливается до соляной кислоты:

HClO 3 + 5HCl (конц.) = 3Cl 2 + 3H 2 O

HClO 3 + NaOH (разб.) = NaClO 3 + H 2 O

При пропускании смеси SO 2 и воздуха сквозь сильнокислый раствор, образуется диоксид хлора:

В 40%-ной хлорноватой кислоте воспламеняется, например, фильтровальная бумага.

8. Нахождение в природе:

В земной коре хлор - самый распространённый галоген. Поскольку хлор очень активен, в природе он встречается только в виде соединений в составе минералов.

Таблица 7. Нахождение в природе

Таблица 7. Минеральные формы

Самые большие запасы хлора содержатся в составе солей вод морей и океанов.

Получение

Химические методы получения хлора малоэффективны и затратны. На сегодняшний день имеют в основном историческое значение. Может быть получен при взаимодействии перманганата калия с соляной кислотой:

Метод Шееле

Первоначально промышленный способ получения хлора основывался на методе Шееле, то есть реакции пиролюзита с соляной кислотой:

Метод Дикона

Метод получения хлора каталитическим окислением хлороводорода кислородом воздуха.

Электрохимические методы

Сегодня хлор в промышленных масштабах получают вместе с гидроксидом натрия и водородом путём электролиза раствора поваренной соли, основные процессы которого можно представить суммарной формулой:

Применение

· Оконный профиль, изготовленный из хлорсодержащих полимеров

· Основным компонентом отбеливателей является Лабарракова вода (гипохлорит натрия)

· В производстве поливинилхлорида, пластикатов, синтетического каучука.

· Производство хлорорганических. На получение средств защиты растений расходуется значительная часть производимого хлора. Один из самых важных инсектицидов - гексахлорциклогексан (часто называемый гексахлораном).

· Использовался как боевое отравляющее вещество, а также для производства других боевых отравляющих веществ: иприт, фосген.

· Для обеззараживания воды - «хлорирования».

· В пищевой промышленности зарегистрирован в качестве пищевой добавки E925.

· В химическом производстве соляной кислоты, хлорной извести, бертолетовой соли, хлоридов металлов, ядов, лекарств, удобрений.

· В металлургии для производства чистых металлов: титана, олова, тантала, ниобия.

· Как индикатор солнечных нейтринов в хлор-аргонных детекторах.

Многие развитые страны стремятся ограничить использование хлора в быту, в том числе потому, что при сжигании хлорсодержащего мусора образуется значительное количество диоксинов.

На западе Фландрии лежит крошечный городок. Тем не менее его название известно всему миру и долго еще будет сохраняться в памяти человечества как символ одного из величайших преступлений против человечества. Этот городок – Ипр. Креси (в битве при Креси в 1346 г. английскими войсками впервые в Европе применено огнестрельное оружие.) – Ипр – Хиросима – вехи на пути превращения войны в гигантскую машину уничтожения.

В начале 1915 г. на линии западного фронта образовался так называемый Ипрский выступ. Союзные англо-французские войска к северо-востоку от Ипра вклинились на территорию, запятую германской армией. Германское командование решило нанести контрудар и выровнять линию фронта. Утром 22 апреля, когда дул ровный норд-ост, немцы начали необычную подготовку к наступлению – они провели первую в истории войн газовую атаку. На ипрском участке фронта были одновременно открыты 6000 баллонов хлора. В течение пяти минут образовалось огромное, весом в 180 т, ядовитое желто-зеленое облако, которое медленно двигалось по направлению к окопам противника.

Этого никто не ожидал. Войска французов и англичан готовились к атаке, к артиллерийскому обстрелу, солдаты надежно окопались, но перед губительным хлорным облаком они были абсолютно безоружными. Смертоносный газ проникал во все щели, во все укрытия. Результаты первой химической атаки (и первого нарушения Гаагской конвенции 1907 г. о неприменении отравляющих веществ!) были ошеломляющими – хлор поразил около 15 тысяч человек, причем примерно 5 тысяч – на смерть. И все это – ради того, чтобы выровнять линию фронта длиной в 6 км! Спустя два месяца немцы предприняли хлорную атаку и на восточном фронте. А через два года Ипр приумножил свою печальную известность. Во время тяжелого сражения 12 июля 1917 г. в районе этого города было впервые применено отравляющее вещество, названное впоследствии ипритом. Иприт – это производное хлора, дихлордиэтилсульфид.

Об этих эпизодах истории, связанных с одним маленьким городком и одним химическим элементом, мы напомнили для того, чтобы показать, как опасен может быть элемент №17 в руках воинствующих безумцев. Это – самая мрачная страница истории хлора.

Но было бы совершенно неверно видеть в хлоре только отравляющее вещество и сырье для производства других отравляющих веществ...

История хлора

История элементарного хлора сравнительно коротка, она ведет начало с 1774 г. История соединений хлора стара, как мир. Достаточно вспомнить, что хлористый натрий – это поваренная соль. И, видимо, еще в доисторические времена была подмечена способность соли консервировать мясо и рыбу.

Самые древние археологические находки – свидетельства использования соли человеком относятся примерно к 3...4 тысячелетию до н.э. А самое древнее описание добычи каменной соли встречается в сочинениях греческого историка Геродота (V в. до н.э.). Геродот описывает добычу каменной соли в Ливии. В оазисе Синах в центре Ливийской пустыни находился знаменитый храм бога Аммона-Ра. Поэтому-то Ливия и именовалась «Ammonia», и первое название каменной соли было «sal ammoniacum». Позднее, начиная примерно с XIII в. н.э., это название закрепилось за хлористым аммонием.

В «Естественной истории» Плиния Старшего описан метод отделения золота от неблагородных металлов при прокаливании с солью и глиной. А одно из первых описаний очистки хлористого натрия находим в трудах великого арабского врача и алхимика Джабир ибн-Хайяна (в европейском написании – Гебер).

Весьма вероятно, что алхимики сталкивались и с элементарным хлором, так как в странах Востока уже в IX, а в Европе в XIII в. была известна «царская водка» – смесь соляной и азотной кислот. В выпущенной в 1668 г. книге голландца Ван-Гельмонта «Hortus Medicinae» говорится, что при совместном нагревании хлористого аммония и азотной кислоты получается некий газ. Судя по описанию, этот газ очень похож на хлор.

Подробно хлор впервые описан шведским химиком Шееле в его трактате о пиролюзите. Нагревая минерал пиролюзит с соляной кислотой, Шееле заметил запах, характерный для царской водки, собрал и исследовал желто-зеленый газ, порождавший этот запах, и изучил его взаимодействие с некоторыми веществами. Шееле первым обнаружил действие хлора на золото и киноварь (в последнем случае образуется сулема) и отбеливающие свойства хлора.

Шееле не считал вновь открытый газ простым веществом и назвал его «дефлогистонированной соляной кислотой». Говоря современным языком, Шееле, а вслед за ним и другие ученые того времени полагали, что новый газ – это окисел соляной кислоты.

Несколько позже Бертоле и Лавуазье предложили считать этот газ окислом некоего нового элемента «мурия». В течение трех с половиной десятилетий химики безуспешно пытались выделить неведомый мурий.

Сторонником «окиси мурия» был поначалу и Дэви, который в 1807 г. разложил электрическим током поваренную соль на щелочной металл натрий и желто-зеленый газ. Однако, спустя три года, после многих бесплодных попыток получить мурий Дэви пришел к выводу, что газ, открытый Шееле, – простое вещество, элемент, и назвал его chloric gas или chlorine (от греческого χλωροζ – желто-зеленый). А еще через три года Гей-Люссак дал новому элементу более короткое имя – хлор. Правда, еще в 1811 г. немецкий химик Швейгер предложил для хлора другое название – «галоген» (дословно оно переводится как солерод), но это название поначалу не привилось, а впоследствии стало общим для целой группы элементов, в которую входит и хлор.

«Личная карточка» хлора

На вопрос, что же такое хлор, можно дать минимум десяток ответов. Во-первых, это галоген; во-вторых, один из самых сильных окислителей; в-третьих, чрезвычайно ядовитый газ; в-четвертых, важнейший продукт основной химической промышленности; в-пятых, сырье для производства пластмасс и ядохимикатов, каучука и искусственного волокна, красителей и медикаментов; в-шестых, вещество, с помощью которого получают титан и кремний, глицерин и фторопласт; в-седьмых, средство для очистки питьевой воды и отбеливания тканей...

Это перечисление можно было бы продолжить.

При обычных условиях элементарный хлор – довольно тяжелый желто-зеленый газ с резким характерным запахом. Атомный вес хлора 35,453, а молекулярный – 70,906, потому что молекула хлора двухатомна. Один литр газообразного хлора при нормальных условиях (температура 0°C и давление 760 мм ртутного столба) весит 3,214 г. При охлаждении до температуры –34,05°C хлор конденсируется в желтую жидкость (плотностью 1,56 г/см 3), а при температуре – 101,6°C затвердевает. При повышенном давлении хлор можно превратить в жидкость и при более высоких температурах вплоть до +144°C. Хлор хорошо растворяется в дихлорэтане и некоторых других хлорсодержащих органических растворителях.

Элемент №17 очень активен – он непосредственно соединяется почти со всеми элементами периодической системы. Поэтому в природе он встречается только в виде соединений. Самые распространенные минералы, содержащие хлор, галит NaCI, сильвинит KCl · NaCl, бишофит MgCl 2 · 6H 2 O, карналлит KCl · MgCl 2 · 6Н 2 O, каинит KCl · МgSO 4 · 3Н 2 О. Это их в первую очередь «вина» (или «заслуга»), что содержание хлора в земной коре составляет 0,20% по весу. Для цветной металлургии очень важны некоторые относительно редкие хлорсодержащие минералы, например роговое серебро AgСl.

По электропроводности жидкий хлор занимает место среди самых сильных изоляторов: он проводит ток почти в миллиард раз хуже, чем дистиллированная вода, и в 10 22 раз хуже серебра.

Скорость звука в хлоре примерно в полтора раза меньше, чем в воздухе.

И напоследок – об изотопах хлора.

Сейчас известны девять изотопов этого элемента, но в природе встречаются только два – хлор-35 и хлор-37. Первого примерно в три раза больше, чем второго.

Остальные семь изотопов получены искусственно. Самый короткоживущий из них – 32 Cl имеет период полураспада 0,306 секунды, а самый долгоживущий – 36 Cl – 310 тыс. лет.

Как получают хлор

Первое, на что обращаешь внимание, попав на хлорный завод, это многочисленные линии электропередачи. Хлорное производство потребляет много электроэнергии – она нужна для того, чтобы разложить природные соединения хлора.

Естественно, что основное хлорное сырье – это каменная соль. Если хлорный завод расположен вблизи реки, то соль завозят не по железной дороге, а на баржах – так экономичнее. Соль – продукт недорогой, а расходуется ее много: чтобы получить тонну хлора, нужно примерно 1,7...1,8 т соли.

Соль поступает на склады. Здесь хранятся трех – шестимесячные запасы сырья – хлорное производство, как правило, многотоннажное.

Соль измельчают и растворяют в теплой воде. Этот рассол по трубопроводу перекачивается в цех очистки, где в огромных, высотой с трехэтажный дом баках рассол очищают от примесей солей кальция и магния и осветляют (дают ему отстояться). Чистый концентрированный раствор хлористого натрия перекачивается в основной цех хлорного производства – в цех электролиза.

В водном растворе молекулы поваренной соли превращаются в ионы Na + и Сl – . Ион Сl – отличается от атома хлора только тем, что имеет один лишний электрон. Значит, для того чтобы получить элементарный хлор, необходимо оторвать этот лишний электрон. Происходит это в электролизере на положительно заряженном электроде (аноде). С него как бы «отсасываются» электроны: 2Cl – → Cl 2 + 2ē . Аноды сделаны из графита, потому что любой металл (кроме платины и ее аналогов), отбирая у ионов хлора лишние электроны, быстро корродирует и разрушается.

Существуют два типа технологического оформления производства хлора: диафрагменный и ртутный. В первом случае катодом служит перфорированный железный лист, а катодное и анодное пространства электролизера разделены асбестовой диафрагмой. На железном катоде происходит разряд ионов водорода и образуется водный раствор едкого натра. Если в качестве катода применяют ртуть, то на нем разряжаются ионы натрия и образуется амальгама натрия, которая потом разлагается водой. Получаются водород и едкий натр. В этом случае разделительная диафрагма не нужна, а щелочь получается более концентрированной, чем в диафрагменных электролизерах.

Итак, производство хлора – это одновременно производство едкого натра и водорода.

Водород отводят по металлическим, а хлор по стеклянным или керамическим трубам. Свежеприготовленный хлор насыщен парами воды и потому особенно агрессивен. В дальнейшем его сначала охлаждают холодной водой в высоких башнях, выложенных изнутри керамическими плитками и наполненных керамической насадкой (так называемыми кольцами Рашига), а затем сушат концентрированной серной кислотой. Это единственный осушитель хлора и одна из немногих жидкостей, с которыми хлор но взаимодействует.

Сухой хлор уже не так агрессивен, он не разрушает, например, стальную аппаратуру.

Транспортируют хлор обычно в жидком состоянии в железнодорожных цистернах или баллонах под давлением до 10 атм.

В России производство хлора было впервые организовано еще в 1880 г. на Бондюжском заводе. Хлор получали тогда в принципе тем же способом, каким в свое время получил его Шееле – при взаимодействии соляной кислоты с пиролюзитом. Весь производимый хлор расходовался на получение хлорной извести. В 1900 г. на заводе «Донсода» впервые в России был введен в эксплуатацию цех электролитического производства хлора. Мощность этого цеха была всего 6 тыс. т в год. В 1917 г. все хлорные заводы России выпускали 12 тыс. т хлора. А в 1965 г. в СССР было произведено около 1 млн т хлора...

Один из многих

Все многообразие практического применения хлора можно без особой натяжки выразить одной фразой: хлор необходим для производства хлорпродуктов, т.е. веществ, содержащих «связанный» хлор. А вот говоря об этих самых хлорпродуктах, одной фразой не отделаешься. Они очень разные – и по свойствам, и по назначению.

Рассказать обо всех соединениях хлора не позволяет ограниченный объем нашей статьи, но без рассказа хотя бы о некоторых веществах, для получения которых нужен хлор, наш «портрет» элемента №17 был бы неполным и неубедительным.

Взять, к примеру, хлорорганические инсектициды – вещества, убивающие вредных насекомых, но безопасные для растений. На получение средств защиты растений расходуется значительная часть производимого хлора.

Один из самых важных инсектицидов – гексахлорциклогексан (часто называемый гексахлораном). Это вещество впервые синтезировано еще в 1825 г. Фарадеем, но практическое применение нашло только через 100 с лишним лет – в 30-х годах нашего столетия.

Сейчас гексахлоран получают, хлорируя бензол. Подобно водороду, бензол очень медленно реагирует с хлором в темноте (и в отсутствие катализаторов), но при ярком освещении реакция хлорирования бензола (С 6 Н 6 + 3Сl 2 → С 6 Н 6 Сl 6) идет достаточно быстро.

Гексахлоран, так же как и многие другие инсектициды, применяется в виде дустов с наполнителями (тальком, каолином), или в виде суспензий и эмульсий, или, наконец, в виде аэрозолей. Гексахлоран особенно эффективен при протравливании семян и при борьбе с вредителями овощных и плодовых культур. Расход гексахлорана составляет всего 1...3 кг на гектар, экономический эффект от его применения в 10...15 раз превосходит затраты. К сожалению, гексахлоран не безвреден для человека...

Поливинилхлорид

Если попросить любого школьника перечислить известные ему пластики, он одним из первых назовет поливинилхлорид (иначе, винипласт). С точки зрения химика, ПВХ (так часто поливинилхлорид обозначают в литературе) – это полимер, в молекуле которого на цепочку углеродных атомов «нанизаны» атомы водорода и хлора:

В этой цепочке может быть несколько тысяч звеньев.

А с потребительской точки зрения ПВХ – это изоляция для проводов и плащи-дождевики, линолеум и граммпластинки, защитные лаки и упаковочные материалы, химическая аппаратура и пенопласты, игрушки и детали приборов.

Поливинилхлорид образуется при полимеризации винилхлорида, который чаще всего получают, обрабатывая ацетилен хлористым водородом: HC ≡ CH + HCl → CH 2 = CHCl. Существует и другой способ получения винилхлорида – термический крекинг дихлорэтана.

CH 2 Cl – CH 2 Сl → CH 2 = CHCl + HCl. Представляет интерес сочетание двух этих методов, когда в производстве винилхлорида по ацетиленовому способу используют HCl, выделяющийся при крекинге дихлорэтана.

Хлористый винил – бесцветный газ с приятным, несколько пьянящим эфирным запахом, легко полимеризуется. Для получения полимера жидкий винилхлорид под давлением нагнетают в теплую воду, где он дробится на мельчайшие капельки. Чтобы они не сливались, в воду добавляют немного желатины или поливинилового спирта, а чтобы начала развиваться реакция полимеризации, туда же вводят инициатор полимеризации – перекись бензоила. Через несколько часов капельки затвердевают, и образуется суспензия полимера в воде. Порошок полимера отделяют на фильтре или на центрифуге.

Полимеризация обычно происходит при температуре от 40 до 60°C, причем, чем ниже температура полимеризации, тем длиннее образующиеся полимерные молекулы...

Мы рассказали только о двух веществах, для получения которых необходим элемент №17. Только о двух из многих сотен. Подобных примеров можно привести очень много. И все они говорят о том, что хлор – это не только ядовитый и опасный газ, но очень важный, очень полезный элемент.

Элементарный расчет

При получении хлора электролизом раствора поваренной соли одновременно получаются водород и едкий натр: 2NACl + 2H 2 О = H 2 + Cl 2 + 2NaOH. Конечно, водород – очень важный химический продукт, но есть более дешевые и удобные способы производства этого вещества, например конверсия природного газа... А вот едкий натр получают почти исключительно электролизом растворов поваренной соли – на долю других методов приходится меньше 10%. Поскольку производства хлора и NaOH полностью взаимосвязаны (как следует из уравнения реакции, получение одной грамм-молекулы – 71 г хлора – неизменно сопровождается получением двух грамм-молекул – 80 г электролитической щелочи), зная производительность цеха (или завода, или государства) по щелочи, можно легко рассчитать, сколько хлора он производит. Каждой тонне NaOH «сопутствуют» 890 кг хлора.

Ну и смазка!

Концентрированная серная кислота – практически единственная жидкость, не взаимодействующая с хлором. Поэтому для сжатия и перекачивания хлора на заводах используют насосы, в которых роль рабочего тела и одновременно смазки выполняет серная кислота.

Псевдоним Фридриха Вёлера

Исследуя взаимодействие органических веществ с хлором, французский химик XIX в. Жан Дюма сделал поразительное открытие: хлор способен замещать водород в молекулах органических соединений. Например, при хлорировании уксусной кислоты сначала один водород метильной группы замещается на хлор, затем другой, третий... Но самым поразительным было то, что по химическим свойствам хлоруксусные кислоты мало чем отличались от самой уксусной кислоты. Обнаруженный Дюма класс реакций был совершенно необъясним господствовавшими в то время электрохимической гипотезой и теорией радикалов Берцелиуса (по выражению французского химика Лорана, открытие хлоруксусной кислоты было подобно метеору, который разрушил всю старую школу). Берцелиус, его ученики и последователи бурно оспаривали правильность работ Дюма. В немецком журнале «Annalen der Chemie und Pharmacie» появилось издевательское письмо знаменитого немецкого химика Фридриха Вёлера под псевдонимом S.С.Н. Windier (по немецки «Schwindler» значит «лжец», «обманщик»). В нем сообщалось, что автору удалось заместить в клетчатке (С 6 Н 10 O 5) и все атомы углерода. водорода и кислорода на хлор, причем свойства клетчатки при этом не изменились. И что теперь в Лондоне делают теплые набрюшники из ваты, состоящей... из чистого хлора.

Хлор и вода

Хлор заметно растворяется в воде. При 20°C в одном объеме воды растворяется 2,3 объема хлора. Водные растворы хлора (хлорная вода) – желтого цвета. Но со временем, особенно при хранении на свету, они постепенно обесцвечиваются. Объясняется это тем, что растворенный хлор частично взаимодействует с водой, образуются соляная и хлорноватистая кислоты: Cl 2 + H 2 O → HCl + HOCl. Последняя неустойчива и постепенно распадается на HCl и кислород. Поэтому раствор хлора в воде постепенно превращается в раствор соляной кислоты.

Но при низких температурах хлор и вода образуют кристаллогидрат необычного состава – Cl 2 · 5 3 / 4 H 2 O. Эти зеленовато-желтые кристаллы (устойчивые только при температурах ниже 10°C) можно получить, пропуская хлор через воду со льдом. Необычная формула объясняется структурой кристаллогидрата, а она определяется в первую очередь структурой льда. В кристаллической решетке льда молекулы Н 2 О могут располагаться таким образом, что между ними появляются закономерно расположенные пустоты. Элементарная кубическая ячейка содержит 46 молекул воды, между которыми есть восемь микроскопических пустот. В этих пустотах и оседают молекулы хлора. Точная формула кристаллогидрата хлора поэтому должна быть записана так: 8Сl 2 · 46Н 2 О.

Отравление хлором

Присутствие в воздухе уже около 0,0001% хлора раздражающе действует на слизистые оболочки. Постоянное пребывание в такой атмосфере может привести к заболеванию бронхов, резко ухудшает аппетит, придает зеленоватый оттенок коже. Если содержание хлора в воздухе составляет 0,1°/о, то может наступить острое отравление, первый признак которого – приступы сильнейшего кашля. При отравлении хлором необходим абсолютный покой; полезно вдыхать кислород, или аммиак (нюхая нашатырный спирт), или пары спирта с эфиром. По существующим санитарным нормам содержание хлора в воздухе производственных помещений не должно превышать 0,001 мг/л, т.е. 0,00003%.

Не только яд

«Что волки жадны, всякий знает». Что хлор ядовит – тоже. Однако в небольших дозах ядовитый хлор иногда может служить и противоядием. Так, пострадавшим от сероводорода дают нюхать нестойкую хлорную известь. Взаимодействуя, два яда взаимно нейтрализуются.

Анализ на хлор

Для определения содержания хлора пробу воздуха пропускают через поглотители с подкисленным раствором йодистого калия. (Хлор вытесняет йод, количество последнего легко определяется титрованием с помощью раствора Nа 2 S 2 O 3). Для определения микроколичеств хлора в воздухе часто применяется колориметрический метод, основанный на резком изменении окраски некоторых соединений (бензидина, ортотолуидина, метилоранжа) при окислении их хлором. Например, бесцветный подкисленный раствор бензидина приобретает желтый цвет, а нейтральный – синий. Интенсивность окраски пропорциональна количеству хлора.